Integrated Framework to Measure Sustainability of Desalination

Team Develops First Index to Account for the Sustainability Performance of Desalination Technologies

In water-scarce urban environments like those of the UAE, desalination technologies play a central role in transforming plentiful saline and brackish water to create freshwater that meets the population’s needs. In the UAE, natural gas-powered thermal desalination is estimated to produce around 80% of the country’s domestic water.

However, desalination is not an entirely benign process, with associated economic, environmental and social impacts. This makes ensuring that desalination does not harm the very environments and populations that they are meant to help support an ongoing challenges. In response to this need, a Khalifa University research team has collaborated with both international and regional experts to develop the first universal integrated framework to assess the sustainability of desalination technologies.

“As far as we could find out, there was no unified sustainability metric to measure the sustainability of a desalination plant in the UAE. That is why we decided to formulate a comprehensive framework for the UAE, to generate a sustainability index that takes into account the four factors of sustainability, which are environmental, social, technical, and economical,” explained Dr. Faisal AlMarzooqi, Assistant Professor of Chemical and Environmental Engineering at Khalifa University.

A paper on the framework titled “An integrated framework for sustainability assessment of seawater desalination” was recently published in journal Desalination, co-authored by research associate Yazan Ibrahim, Dr. AlMarzooqi, Professor of Chemical and Environmental Engineering Dr. Hassan A. Arafat, and Professor of Engineering Systems and Management Dr. Toufic Mezher, all from Khalifa University.

“What makes desalination a different and more urgent challenge than ever before, is the rapid evolution of this region in its social, environmental, and economic contexts. This led to a significant dependence on desalination as a reliable freshwater alternative due to the geographical and geological structure of the UAE that limit the number of natural water resources,” Ibrahim shared.

The framework developed by the team combines different desalination-related sub-factors and covers the four sustainability factors. It took a unique methodological approach to integrate the different framework components to be able to assess the sustainability of any desalination technology worldwide. The framework consists of three levels, the first being the goal sought to be reached, the
second level being the main sustainability factors and the third being the sub-factors assigned to each factor.  The framework was then demonstrated by assessing the sustainability of the three main desalination technologies in the UAE, which are multi-stage flash distillation (MSF), multiple-effect distillation (MED), and seawater reverse osmosis (SWRO).

“SWRO, which is a membranes-based process, is the most widely adopted technology worldwide, with a global share of around 68% in 2018. It is characterized with low environmental impacts, low cost, reduced land use, and ease of operation. On the other hand, MED and MSF, which are thermally-based technologies, are known for their reliability and robustness as well as their high environmental footprint. Therefore, the challenge for sustainable desalination today lies in the ability to find a tradeoff between the economic, social, and environmental aspects of these technologies,” Yazan explained.

Overall, the three main sustainability factors were environmental, techno-economic and social, each of which had 5-6 desalination-related sub-factors, which were selected from published literature and expert opinion on the topics. The technical factor demonstrated the technically feasible of the technology. This is closely related to the economic factor. Therefore, the team decided to combine those two factors into one representative factor namely techno-economic. Some of the sub-factors included water extraction and discharged brine impacts in the environmental factor, quality of produced water and scaling and fouling propensity in the techno-economic factor, and technology safety and level of noise in the social factor.

When the framework was applied to the three major types of desalination technologies used in the UAE, SWRO was found to be the most sustainable technology followed by MED and MSF.

“This was due to the unique local conditions and parameters of the UAE – like the relatively low price of natural gas and the relatively higher weightage of environmental impact. That is why it is important to calculate the sustainability of a technology in a way that is specific to its local application. In the future if new technologies emerge, these too can be added to the index and framework,” Dr. Al Marzooqi explained.

The team is now working on the technological aspects of sustainable desalination and hope that opportunities are generated in the near future to further develop sustainability indices.

“Till date, the economics and efficiency of sustainable desalination technologies are not able to fully replace traditional desalination technologies. Sustainable desalination technologies are still awaiting a technological breakthrough to give it a competitive advantage against traditional desalination technologies. This research will serve as a performance metric for sustainable desalination. This will benefit the UAE and the world by enabling the government and regulatory bodies in measuring the
current sustainability of desalination plants and setting future targets which will help in achieving other sustainability related targets such as climate change and other,” Dr. Arafat added.

And though the team’s framework was developed to test the sustainability of desalination technologies in the UAE, it can be universally applied to other desalination technologies and/or other countries.

Their research has also been presented through two conference presentations – one at the International Desalination Workshop that was held in Busan, South Korea in November 2017, and another at the Desalination for the Environment Conference of the European Desalination Society that was held in September 2018 in Athens, Greece.

Zarina Khan
Senior Editor
17 December 2018

Cooling Amine Solvent Using Vortex Tubes

Team Demonstrates Energy and Cost Savings Potential for Acid Gas Enrichment Units

A collaborative project at the Khalifa University Center for Catalysis and Separation has explored how to improve the sustainability of the acid gas enrichment (AGE) process in natural gas processing plants operating in hot countries, to reduce their carbon footprint and improve energy efficiency.

When natural gas contains containing significant amounts of hydrogen sulfide and carbon dioxide, it is considered ‘sour gas’ and has to undergo processes that remove the acidic components through a process called ‘gas sweetening’.

Gas sweetening units produce a by-product known as ‘acid gas’ besides the main product named ‘sweet gas’. Acid gas, which is a mixture of H2S and CO2 predominately, is processed further in sulfur recovery units to prevent the emission of sulfur species and recover the elemental sulfur. If the acid gas contains low concentrations of H2S, an AGE unit is employed to enrich the H2S content of the acid gas. AGE units also produce a CO2-rich stream besides the enriched acid gas. In hot climates like in the UAE, high ambient temperature leads to AGE operation with hotter solvents, which results in higher energy consumption in the regeneration section of the plant. In order to reduce this inefficiency, the team considered the use of a scheme for cooling the solvent within an AGE unit, to reduce the operational energy.

The team was composed of Khalifa University Associate Professor Dr. Abdallah S. Berrouk, Assistant Professor Dr. Yasser F. AlWahedi, Research Engineer Satyadileep Dara, and Chemical Engineering alumna Aisha A. AlHammadi, along with Abdulla Al Shaiba from Al Yasat Petroleum Operations Company Ltd and Fadi Al Khasawneh from the Abu Dhabi National Oil Company.  

“We looked to integrate a Ranque-Hilsch vortex tube (RHVT) within the acid gas enrichment unit to decrease its energy consumption while enhancing the purity of the resulting gas product,” Dara explained. He was the lead author on a recently published paper in the Journal of Cleaner Production titled ‘Carbon footprint reduction of acid gas enrichment units in hot climates: A techno-economic simulation study’.

A RHVT is a mechanical device that separates a compressed gas into hot and cold streams. Requiring no moving parts, electricity, or Freon, it instead leverages principles of physics to separate the gases into a hot end that can reach temperatures of 200 °C and a cold end that can reach −50 °C, making it an energy-efficient cooling tool. RHVTs are often used in to cool cutting tools that heat up during use.

This potential solution to reduce the energy waste of AGE was inspired by the team’s knowledge of the UAE’s Mirfa plant.

“We were aware that the Mirfa plant produced high pressured nitrogen as a by-product of the air separation unit in the same plant complex, and realized that integrating a nitrogen-fed RHVT was the best option to reduce energy wastage, given the available resources and resulting economics,” Dara shared.

In the team’s proposed solution, the high-pressure nitrogen enters the RHVT and is separated into hotter and colder streams. The latter is then mixed with ambient air in an air-nitrogen mixer to provide a coolant stream at sufficiently lower temperatures, such that it cools down the lean solvent to the desired levels. Lower lean solvent temperature in turn results in significant reduction in energy consumption and higher product purities.

The solution they proposed was tested and validated in process simulator ProMax, which found that at the optimal temperature, their proposed RHVT solution can achieve 13 kg/s in steam savings (equivalent to 40% reduction in total steam rate). This reduced energy consumption leads to an annual carbon dioxide footprint reduction of 83.7 million kg, which is equal to a 40% reduction in the plant’s total carbon dioxide footprint. Economically, the evaluated annual energy savings translate to USD11.2 million.

The team believes that the solution they have hit upon can be utilized in sour gas processing plants in hot climates, all of which struggle with reducing energy wastage due to the high temperatures of the solvents.

“Hot climate regions like that of the Gulf would benefit significantly from the proposed scheme, since it results in a coolant stream that is not readily available in hot regions due to the high ambient temperature. And while our project used pressurized nitrogen from a specific facility, in fact any high pressure stream can be used as the working fluid for the RHVT, like compressed ambient air. Regardless what gas is used, we have demonstrated that the integration of RHVT can help a natural gas processing plant operating in hot climate achieve increased operational efficiency in terms of product quality and energy consumption,” Dr. AlWahedi added.

Following their simulation based work, the team are now doing laboratory-scale tests to assess the performance of RHVT to provide a quantitative prediction of levels of cooling achieved using the RHVT.

Zarina Khan

Senior Editor

26 November 2018

New Wave Modes from Black Holes Discovered

Faculty Asserts Frequencies Can Be Tested Experimentally to Advance Unifying Physics Theory

New types of wave oscillations in black holes have been discovered that can be probed experimentally by gravitational-wave detectors, which in turn could advance scientific understanding of the key elements of a grand unifying theory for physics.

A black hole is formed through the collapse of a star, which causes a massive gravitational force to pull in all objects around it, including light, dust, and gas, thus causing the black hole to grow. These massive and incredibly dense objects have in general three ‘layers’– the singularity at the center, then the inner event horizon, and finally the outer event horizon, where phenomenon take place that challenge the laws of General Relativity. Our galaxy – the Milky Way – is estimated to have several black holes. Moreover, recent research in astrophysics indicates that a supermassive black hole should sit at the center of every galaxy. The mass of such astrophysical objects should be typically of the order of several million solar masses.

Black holes pull objects towards them and they can also attract each other. Like two whirlpools in the ocean, the black holes orbit around each other, radiating gravitational waves as they draw nearer. Eventually they lose energy in the gravitational radiation as their revolutions speed up and get closer, allowing their event horizons to merge. The last phase, before they merge, is called the ‘ringdown’, where the unified black hole system is still ringing and radiating, but progressively less so.

This ringdown phenomenon was first detected in 2016, when the Laser Interferometer Gravitational-Wave Observatory (LIGO) operated by Caltech and the Massachusetts Institute of Technology detected gravitational wave signals from a pair of inspiralled black holes as they merged and underwent the ringdown – discoveries that led to the Nobel Prize in 2017.

“In the ringdown phase, the black hole starts vibrating after interacting with matter.  These vibrations get translated into gravitational waves, in the same way a guitar string translates being plucked into sound waves. It also happens that independently on how you ‘pluck’ the black hole, for example if it is fed by a scalar particle, a photon, or an electron, the resulting gravitational wave will have the same frequency, much like the string,” explained KU Assistant Professor in the Department of Applied Mathematics and Statistics Dr. Davide Batic.

The waves are sent out during the ringdown phase and are composed by many frequencies, called quasinormal modes. Their oscillations become smaller and smaller as time goes by.

“Despite all the knowledge we have on the quasinormal spectrum of black holes, there has been no actual explicit formula to compute them. All computations have been done using numerical methods,” Dr.  Batic added.

Dr. Batic has co-published a paper on the new black hole oscillations he believes he has discovered. The paper titled ‘Some exact quasinormal frequencies of a massless scalar field in Schwarzschild spacetime’, was published in the journal Physical Review D with co-authors Dr. Marek Nowakowski from the Universidad de los Andes, Columbia, and the master student Karlus Redway, from the University of the West Indies.

The team’s research results may also advance the development of a grand unified physical theory, which has a been an ongoing challenge in physics for decades. Such a grand unified theory should merge two of the main pillars of modern physics – General Relativity and Quantum Mechanics. Furthermore, when General Relativity is pushed to the limits, like inside the event horizon of a black hole, it makes an ‘unphysical prediction’ that the core of a black hole would have infinite curvature.  

In Einstein’s General Theory of Relativity, gravity is caused by the curvature of space-time. However, the theory cannot account for ‘unphysical predictions’ — calculations not in accordance with the laws or principles of physics — when applied to what happens inside the event horizon of a black hole.

“Apart from trying to describe how quantum fields interact with black holes – this is what we call quantum field theory in curved space-times – results in this area are of paramount importance in the development of a unified physical theory such as Quantum Gravity because every candidate theory of topics such as String Theory and Loop Quantum Gravity will need to pass a fundamental test, namely it must be able to reproduce on a certain scale all predictions arising from quantum field theory in curved space-times,” Dr. Batic explained.

He is now working to derive a formula to compute the numerical values of the quasinormal wave modes from black holes. This, combined with the experimental data collected by LIGO and the European Virgo interferometer experiment, may be able to show the existence or absence of black holes inspired by noncommutative geometry, thus helping us to better understand the key ingredients of Quantum Gravity.

“We already know that General Relativity is not able to reliably explain what happens inside the event horizon of a black hole. This suggests that we need a better theory unifying General Relativity with Quantum Mechanics, and at the same time black holes may contain the deepest secrets of the universe and its beginnings. Many things can be benefited by further study into black holes, as they provide a unique opportunity to test all of the physical extremes – very large distances, very small distances, very high energies, etc.,” Dr. Batic explained.

Students and Faculty Drive Knowledge Exchange at ADIPEC 2018

Research Shared at Technical Sessions While Students Lead Hands-On Activities and Demonstrations in STEM Areas

Khalifa University faculty members are leading several technical sessions and presenting papers at the Abu Dhabi International Petroleum Exhibition and Conference (ADIPEC) 2018 while a dozen student volunteers lead hands-on activities and demonstrations for visitors from different schools at Young ADIPEC.

Khalifa University is the ‘Academic Partner’ for ADIPEC 2018, which is being held on 12-15 November at the Abu Dhabi National Exhibition Center (ADNEC). The sixth annual Young ADIPEC is being held at ADIPEC 2018 with the support of the Abu Dhabi Department of Education and Knowledge (ADEK).

Dr. Arif Sultan Al Hammadi, Executive Vice-President, Khalifa University of Science and Technology, said: “Our participation in ADIPEC 2018 illustrates the faculty expertise and the scientific innovation we continue to achieve in petroleum engineering, especially in exploration and pipeline technologies. The oil and gas sector plays a critical role in the overall development of the UAE and seeking new engineering innovations in this sector through research will surely facilitate efficient production and enhanced oil recovery. We believe through this participation, industry partners and other stakeholders will gain more awareness about our strength as an institution that drives research towards achieving new techniques in this sector.”

KU has its own Khalifa University Zone at ADIPEC, where students are showcasing hands-on science-based activities at the Chemistry, Earth Science, Physics, Mathematics, and Computing stations. More than 600 students from 25 schools are visiting the event this year. The Chemistry Station features three hands-on activities, the Engineering Zone features an education kit and, the Earth Science Station has two demonstrations. The Physics Station offers three demonstrations, while the Mathematics and Computer stations feature two each.

Faculty from the Petroleum Engineering Department are co-chairing several special sessions focusing on Drilling and Completion Technology, while Chemical Engineering faculty are delivering four oral and one e-poster presentations. Four papers co-authored by Petroleum Engineering faculty are also being presented, while a Petroleum Engineering staff member is serving as a Young Professional Mentor for one of the selected teams as part of the Society of Petroleum Engineers (SPE) ADIPEC University Program judging Committee Member. There is also a special session on ‘Is Creativity Beneficial for Engineers?’ where two faculty will be sharing their perspectives.

Clarence Michael

News Writer

13 November 2018

Improved Switching Algorithm Helps Balance High-Voltage Power Converter

Modular Multi-Level Converter Can Provide Greater Efficiency in Wind, Solar, Oil and Gas, and EV Applications

A Khalifa University research team has developed a new switching algorithm for modular multi-level converters (MMC) — a promising electrical power system that has the potential to benefit the clean energy and oil and gas sectors.

The team, led by Associate Professor Dr. Abdul Rahman Balanthi Beig with graduate students Safia Babikir Bashir and Yan Yan, have developed a new switching algorithm to improve the performance of MMC. They recently published a paper in the international journal ‘Electrical Power and Energy Systems’ on their research. The MMC is expected to facilitate major changes in the way next-generation power systems are connected and operated.

“With the emergence of multi-level converters, the whole concept of the way electricity is generated, transmitted and consumed is changing. Today efficiency is the key objective in the electrical energy sector. The more energy mankind requires, the more scientists and engineers have been tasked with the challenge of transferring power over long distances and connecting various types of power systems and grids in the most effective and efficient manner possible, to reduce losses and cost. The MMC has potential to solve some of these challenges, but itself had some unresolved issues that we have attempted to address to increase its voltage balancing and overall reliability,” Dr. Beig explained.

An MMC is a type of multi-level voltage-source converter that can convert electric power from high voltage direct current (HVDC) to high voltage alternating current (HVAC), and vice versa. The modularity of the MMC makes them relevant to many functions and industries that can benefit from their ability to control a voltage source without an isolated direct current (DC) bus voltage, which eliminates the need of an additional isolation transformer, making the system more compact, economical and efficient. MMCs are now the most rapidly growing type of voltage source converters and are used in medium voltage applications, like integrating wind generators or large solar plants to electrical grids.

Dispatching electrical energy in direct current (DC) form is economical and efficient when large amounts of power, approximately a few megawatts, is transferred over a long distance at very high voltages of about 600kV to 1600kV. This technology is known as High Voltage Direct Current (HVDC) transmission. HVDC was not sufficiently reliable, efficient and simple to operate until the multi-level voltage source converter (ML-VSC) system was invented in the early 21st century. With this enabling technology, the electric power generated from sources such as large photovoltaic farms and wind farms can be integrated easily into HVDC networks.

In comparison, the AC form of power is economical when a few hundred kilowatts of power is distributed to several consumers in an industrial or residential area, and when that power is distributed at different voltage levels. So with MMC, the existing vast AC network is still useful, as ML-VSC links the electrical energy from HVDC to AC networks. The ML-VSC can also transfer power from an AC network to a DC network and vice versa.

Multi-level converters based on the MMC configuration also offer modularity, which makes them the very attractive from the manufacturing and operational point of view. An MMC is a stack of several identical single phase converter units. The manufacturing industry has the advantage of repeatability where one type of small converter (known as a cell) is manufactured in a large number, allowing parallel production line.

In spite of the many MMC advantages, technicians have found some limitations due to differences in voltage across the cells and large circulation current in the converter power circuit due to this imbalance. This degrades the converter efficiency. Therefore, the Power Electronics and Sustainable Energy (PEASE) lab research team at KU has developed a new switching algorithm for MMC, which results in less cell voltage variation, thus reduced circulation current.

“We are working on developing a new switching algorithm that will eventually improve the performance of MMC and also working on optimizing the size of capacitor and arm inductors that are essential components of MMC. Another area of research is developing new control algorithms to connect these inverters between HVDC and AC networks,” Dr. Beig explained.

The team demonstrated the successful use of their algorithm to a MMC-based DC-to-AC converter connected to different types of AC grids. This work is published as a paper in the international journal ‘Electrical Power and Energy Systems’. The team is currently in the process of demonstrating the successful use of their algorithm for a MMC-based AC-to-DC converter and published their initial work in the IEEE Industry Applications Annual meeting and Conference (IEEE-IAS 2018) at Portland USA, which took place Sept 21-27, 2018.

Electrical engineering graduate students contributed to the project with the support from PEASE Lab engineer Saikrishna Kanukollu. Currently the team headed by Dr. Beig and electrical engineering graduate student Yan Yan has developed an experimental prototype of MMC. The next step is to develop another similar prototype and demonstrate the power transfer between two AC networks through and HVDC link.

Now Dr. Beig and other researchers at the PEASE lab are working on further developing the findings from the project and other related applications at Khalifa University’s newly launched Advanced Power and Energy Center.

“New MMC applications being developed include compact substations using power electronic transformers. One of the challenges is to keep these converters in operation without going out of control when large changes in the AC network takes place,” Dr. Beig explained.

Dr. Beig is also working with Professor Dr. Igor Boiko to develop self-tuning algorithms for these converters so that the converters continue to have stable operation under such conditions.

“This project has great promise for industry applications and further development. If the identified problems with MMC are addressed, then MMC based regenerative drives will become very popular and find applications in heavy industries like oil and gas, all electric ships and all electric aircraft, in addition to the renewable energy systems,” Dr. Beig concluded.

Zarina Khan

Senior Editor

29 October 2018

Enhancing 2D Face Recognition Systems Associate Professor of Computer Engineering

Dr. Naoufel Werghi how his Research Leverages Deep Learning to Develop Robust 2D Face Recognition Systems

Face recognition systems are ubiquitous. We use them for security in places like airports, at borders and in venues that manage large volumes of people, like stadiums and theaters. They are also integrated into smartphones as biometric locks, are used to track lost children across areas, and are part of the next generation of targeted marketing, where they scan your face to determine your age and gender to select the appropriate digital ads to show you. The more reliable, accurate and speedy facial recognition systems become, the more ways they can be integrated into sectors to provide enhanced security and convenience.

One of the common face recognition systems is two dimensional (2D) face recognition systems, which is the type we often see in airports. 2D face recognition systems can use computer vision and photometric methods to scan through available photographs of a person’s face, to ‘learn’ how to identify them when they appear before the system’s cameras. But the cutting-edge of this technology has been struggling to meet our growing needs and expectations, particularly facial identification when the face is only seen incompletely, or at a different angle, or under different lighting, or with different facial expressions, or even disguising makeup.

While engineers have been able to develop algorithms that can identify faces in these scenarios in constrained situations, when it comes to real-world use, they have often failed to manage the range of changeable parameters. They particularly struggle to recognize faces when they are not front facing and centered, and the more extreme the angle and pose, the more challenging it is for the system.

That is why I have been working with students and faculty in halifa University and abroad to develop an unconstrained face identification template that can handle all of the challenges of 2D facial recognition in real-life scenarios. We developed a first prototype to recognize faces using 3D facial images. This
modality relies on the facial shape as a main information and therefore is less sensitive to variations in pose and light conditions. Our system has been validated on two public datasets containing more six thousand images, and reached an accuracy above 95% even in the presence of facial expressions.

Building on advances in deep learning we have developed another system that is able to automatically learn facial image registration, which transform a face pose in the image from a lateral view to a frontal view. It is also able to learn a face signature as part of an end-to-end trainable Convolutional Neural Network.

The first part of network is the registration module, which learns from 2.6 million images of 2,622 faces of YouTube celebrities, to ‘understand’ how they can look different from different angles, in different lighting, with different types of makeup, and when wearing different expressions. That provides the system with a baseline understanding that is then enhanced by the second part, the representation module, which is able to learn meaningful feature encoding of input face images. Images of a targeted
face can be uploaded, which it then ‘learns’ and can seek out using the lessons applied from the registration module.

The system we developed performed better than the existing state of the art methods. We ran it through three different types of face image datasets – the IJB-A dataset that contains 5,712 images and
2,085 videos of 500 subjects captured in real life scenarios around the world; the COX dataset that contains 4,000 uncontrolled low resolution video sequences of 1,000 subjects walking in a gymnasium without enforcing any constraints on their facial expressions, lighting conditions and head poses; and the YouTube Celebrities dataset of 1,910 low-resolution face videos of 47 celebrities downloaded from YouTube. We reached a recognition accuracy of 96%, 90% and 97%.

But the part of which I am proudest of is having involved undergraduate student in face recognition research. From 2009 till today, seven face identification projects have been proposed and undertaken by student groups in the Senior Design Project and the Artificial Intelligence course in which I participate.

My most recent group of students – Mohamed Khalid Almansoori, Ali Alshkeili, Abdullah Alenezi, and Eissa Alromaithi – are currently working on a face identification system using a simple 2D camera that can authenticate an individual or detect a suspect. In the first mode the user identifies himself by entering a pin code or swiping an ID card. The system captures the face image of the user, compares the input image with the reference image stored in the system and decides whether or not the user corresponds to the identity that they claim to be. This is the kind of authentication system currently used in Abu Dhabi Airports at the passport check gates.

In the second mode, the system detects faces in a scene and tries to find the face that correspond to a targeted face. If the targeted individual is found, an alarm will be then triggered, signaling the presence of that suspect. The second mode is the most challenging, as the camera has to scan faces from various
angles and in different light conditions. We recently featured this project at Dubai’s annual Water, Energy, Technology, and Environment Exhibition 2018 (WETEX).

My research and the project led by my students, both aim to enhance the UAE’s expertise in the growing field of face recognition systems. The global facial recognition technology market is expected to exceed $9.6 billion by 2023, making it a valuable market in which to develop intellectual and human

Dr. Naoufel Werghi is Associate Professor of Computer Engineering at the Khalifa University of Science
and Technology

Khalifa University’s ACE4S Wins Special Recognition Award from Semiconductor Research Corporation

Center Dedicated to Advance Semiconductor Research and Technology in Abu Dhabi Achieves Several Milestones Over Five Years

The Semiconductor Research Corporation (SRC) has awarded the Khalifa University-led ATIC-
SRC Center of Excellence for Energy Efficient Electronics Systems (ACE4S) the
‘Semiconductor Research Corporation Board of Directors Recognition Award – Pioneering
Semiconductor Research in Abu Dhabi’.

The award was presented to the co-directors, Dr. Ibrahim Elfadel, Professor of Electrical
Engineering and Computer Science at Khalifa University, and Dr. Mohammed Ismail El Naggar,
Adjunct Faculty at Khalifa University, in a ceremony at the SRC’s annual TECHCON
conference, which took place in Austin, Texas, last month.

ACE4S has come a long way since its inception in May 2013 as part of Masdar Institute,
generating significant intellectual capital including more than seven issued patents and 18 more pending. The center, dedicated to advance semiconductor research and technology in Abu
Dhabi through local academic research, is supported by Abu Dhabi-Government’s Mubadala
Development Company with Khalifa University equally sharing its total funding needs.

Dr. Ibrahim Elfadel, Professor and co-Director of ACE4S, said: “This is the first time SRC has given such an award anywhere outside the US. Moreover, ACE4S was the only SRC center
outside the US. This in itself was an achievement given that many advanced countries in
Europe, America, and Asia could have hosted such a center dedicated to semiconductor for
research in internet of things (IoT).”

A high technology-based research consortium, the SRC serves as a crossroads of collaboration
between technology companies, academia, government agencies, and SRC’s highly regarded
engineers and scientists. It plays an indispensable part to address global challenges, using
research and development strategies, advanced tools and technologies.

Over the course of five years, some of the ACE4S milestones achieved for the UAE include
developing the first set of PhD graduates in the semiconductor field (with seven already
graduated, and five more in the pipeline), first multi-university research center, first hardware-secure biomedical system on chip (SoC), and first silicon photonics tape-out. It also won four best conference papers, achieved two most-downloaded journal papers of the month, and published two books, demonstrating the research drive at the Center, which formally wrapped up on 30 April 2018 after completing its founding mandate.

Through research and training in self-powered wireless sensing and monitoring systems,
ACE4S aimed to create knowledge, educate, train, and enable a highly skilled workforce to
drive innovation and entrepreneurship in the UAE’s semiconductor sector in line with the Abu
Dhabi 2030 vision. The Center was organized around an overall theme that vertically ties
together local UAE research strengths in energy efficient wireless chipsets and sensors,
wearable devices, MEMS, energy harvesting, power management, and scalable nanometer system-on-chip.

Dr. Elfadel is currently working under the newly created Center for Cyber Physical Systems
(C2PS) at Khalifa University on various aspects of hardware accelerators for artificial
intelligence (AI). “I also continue to conduct research on MEMS for space applications, cloud
and edge computing, and embedded signal processing,” he said.

ACE4S has also encouraged entrepreneurship and tech startups to emerge. A start-up focusing
on heart monitoring technology for early detection of heart attacks is still in progress and the project seems to have a good potential for commercialization in the area of wearable weight and walk monitoring.

Clarence Michael
News Writer
17 October 2018