Dr. Mohamed Ramy El-Maarry
Dr. Mohamed Ramy El-Maarry Associate Professor Director, Space and Planetary Science Center. Earth Sciences

Contact Information
mohamed.elmaarry@ku.ac.ae

Biography

Dr. El-Maarry earned his bachelors degree in Geology and Chemistry in Cairo University. He followed it up with two European masters degrees in Sweden and France, and a PhD in Goettingen University in Germany for his work at the Max-Planck institute for solar system research. 

 

Dr El-Maarry has been involved with numerous space missions in the past 14 years for both ESA and NASA, including the European Rosetta mission to comet 67P/Churyumov-Gerasimenko, and the NASA  New Horizons mission that explores Kuiper Belt Objects at the edge of our solar system, in addition to being on the science team for numerous other active and future missions including the HiRISE and CaSSIS imagers onboard NASA’s MRO and ESA’s TGO missions, respectively, and the upcoming ESA ExoMars Rover, ESA’s Comet Interceptor, and the Emirates Lunar Mission. He is currently the director of the Space and Planetary Science Center and an associate professor of planetary sciences at Khalifa University in the United Arab Emirates. His research covers planetary surfaces with a focus on geomorphology and associated physical processes using a multi-disciplinary approach that involves data analysis of remote sensing data, modeling, lab work and comparative planetology mainly through fieldwork. 

 

In addition to his research activities, Dr. El-Maarry has participated in numerous reviewing and expert evaluation panels. In particular, he was a member of the expert panel that participated in the assessment of missions proposed to NASA, which ended with the selection of Dragonfly mission to Titan. He was also a member of the topical teams that helped in devising the European Space Agency’s future strategy for missions during the 2035-2050 time period."


Education
  • University of Goettingen, Germany
  • University of Paul Sabatier in Toulouse, France
  • Lulea Technical University, Sweden
  • Cairo University, Egypt

Teaching
  • Planetary Science (EPSS400)

Affiliated Research Institutes/Centers
  • Space and Planetary Science Center

Research
Research Projects

Glacier-like landforms on Mars 

Glacier-like landforms (GLFs) and other classes of viscous flow features record the conditions when the obliquity of Mars allowed for the atmospheric deposition of ice in the mid-latitudes of Mars. However, they persist to this day because they are covered by a substantial dust cover that protects them from intense sublimation. While substantial work has been carried out over the years to better understand and characterize GLFs, their geologic settings, morphometry, and overall morphology, we still need to better understand how GLFs evolve with time and what are the geologic or climatic controls on that evolution.

We are currently carrying out a comparative analysis between two notable GLF systems on opposite hemispheres: a notable mountain glacier system in eastern Argyre, and the central peak of Moreux crater that straddles the dichotomy boundary, and has received considerable attention given its inferred long-term glacial evolution, and potential polyphase glacial and periglacial features. Both systems are somewhat similar in terms of geologic setting (flows and features associated with a centralized high ground), overall scale, and apparently young age (100s of millions of years old), so a comparison of these two systems may yield new insights into how such systems evolve with time.


Research Staff and Graduate Students:

Students
Khadiga Mohamed Imam PhD student