Undergraduate Catalog
2015 - 2016
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>PRESIDENT’S MESSAGE</td>
<td>7</td>
</tr>
<tr>
<td>2.0</td>
<td>ACADEMIC CALENDAR</td>
<td>8</td>
</tr>
<tr>
<td>3.0</td>
<td>THE UNIVERSITY</td>
<td>10</td>
</tr>
<tr>
<td>3.1</td>
<td>History of Khalifa University</td>
<td>10</td>
</tr>
<tr>
<td>3.2</td>
<td>Board of Trustees</td>
<td>11</td>
</tr>
<tr>
<td>3.3</td>
<td>University Vision and Mission</td>
<td>11</td>
</tr>
<tr>
<td>3.4</td>
<td>Licensure and Accreditation</td>
<td>12</td>
</tr>
<tr>
<td>3.5</td>
<td>University Financial Resources</td>
<td>12</td>
</tr>
<tr>
<td>3.6</td>
<td>Organizational Chart</td>
<td>12</td>
</tr>
<tr>
<td>4.0</td>
<td>ADMISSIONS REQUIREMENTS AND FEES</td>
<td>14</td>
</tr>
<tr>
<td>4.1</td>
<td>General Admissions Requirements</td>
<td>15</td>
</tr>
<tr>
<td>4.2</td>
<td>Entry Assessment</td>
<td>16</td>
</tr>
<tr>
<td>4.3</td>
<td>Recognized Secondary School Certificates</td>
<td>16</td>
</tr>
<tr>
<td>4.4</td>
<td>Application Documentation Required</td>
<td>18</td>
</tr>
<tr>
<td>4.5</td>
<td>Selection Procedure</td>
<td>19</td>
</tr>
<tr>
<td>4.6</td>
<td>Transfer Students</td>
<td>19</td>
</tr>
<tr>
<td>4.7</td>
<td>Application Process</td>
<td>20</td>
</tr>
<tr>
<td>4.8</td>
<td>Scholarships, Incentives and Fees</td>
<td>21</td>
</tr>
<tr>
<td>5.0</td>
<td>DEGREE REQUIREMENTS, REGISTRATION, AND ACADEMIC RULES AND REGULATIONS</td>
<td>24</td>
</tr>
<tr>
<td>5.1</td>
<td>Degree Program Offered</td>
<td>24</td>
</tr>
<tr>
<td>5.2</td>
<td>Preparatory Program</td>
<td>25</td>
</tr>
<tr>
<td>5.3</td>
<td>University Degree Requirements</td>
<td>25</td>
</tr>
<tr>
<td>5.4</td>
<td>General Education Requirements</td>
<td>26</td>
</tr>
<tr>
<td>5.5</td>
<td>Majors, Minors and Double Majors</td>
<td>27</td>
</tr>
<tr>
<td>5.6</td>
<td>Variation to Academic Program</td>
<td>26</td>
</tr>
<tr>
<td>5.7</td>
<td>Time Limit on Duration of Study and Re-admission</td>
<td>30</td>
</tr>
<tr>
<td>5.8</td>
<td>Academic Advising and Registration</td>
<td>30</td>
</tr>
<tr>
<td>5.9</td>
<td>Registration</td>
<td>31</td>
</tr>
<tr>
<td>5.10</td>
<td>Withdrawal From Courses and From the University</td>
<td>32</td>
</tr>
<tr>
<td>5.11</td>
<td>Academic Year</td>
<td>33</td>
</tr>
<tr>
<td>5.12</td>
<td>Credit System</td>
<td>33</td>
</tr>
<tr>
<td>5.13</td>
<td>Course Title, Code, Credit Value and Description</td>
<td>33</td>
</tr>
<tr>
<td>5.14</td>
<td>Total Degree Credits and Semester Credit Loads</td>
<td>34</td>
</tr>
<tr>
<td>5.15</td>
<td>Full and Part-Time Status</td>
<td>34</td>
</tr>
<tr>
<td>5.16</td>
<td>Student Classification</td>
<td>34</td>
</tr>
<tr>
<td>5.17</td>
<td>Graduation Residence Requirements</td>
<td>35</td>
</tr>
<tr>
<td>5.18</td>
<td>Grading System</td>
<td>35</td>
</tr>
<tr>
<td>5.19</td>
<td>Grade Point Average</td>
<td>36</td>
</tr>
<tr>
<td>5.20</td>
<td>Incomplete Grades</td>
<td>37</td>
</tr>
<tr>
<td>5.21</td>
<td>Repetition of Courses</td>
<td>38</td>
</tr>
<tr>
<td>5.22</td>
<td>Advanced Standing Credit</td>
<td>38</td>
</tr>
<tr>
<td>5.23</td>
<td>Credit by Examination</td>
<td>38</td>
</tr>
<tr>
<td>5.24</td>
<td>Final Grade Changes and Appeals</td>
<td>39</td>
</tr>
<tr>
<td>5.25</td>
<td>Lateness and Attendance Guidelines</td>
<td>39</td>
</tr>
</tbody>
</table>
5.26 Language of Instruction and Examination
5.27 Leave of Absence and Reinstatement
5.28 Evaluation and Examinations
5.29 Records and Transcripts
5.30 Academic Honors
5.31 Academic Probation
5.32 Academic Dismissal
5.33 Student Rights and Responsibilities
5.34 Student Academic Regulations and Policies

6.0 DIVISION OF STUDENT SERVICES
6.1 Student Engagement
6.2 Career and Counseling Services
6.3 Student Activities
6.4 Student Rights
6.5 Non-Academic Student Conduct Regulations

7.0 PREPARATORY PROGRAM

8.0 COLLEGE OF ENGINEERING
College Vision
College Mission
Department of Aerospace Engineering
Department of Applied Mathematics and Sciences
Department of Biomedical Engineering
Department of Civil Infrastructure and Environmental Engineering
Department of Electrical and Computer Engineering
Department of Humanities and Social Sciences
Department of Industrial and Systems Engineering
Department of Mechanical Engineering
Department of Nuclear Engineering
Minor in UAV

9.0 COURSE DESCRIPTION
Aerospace Engineering
Biomedical Engineering
Business Studies
Chemistry
Civil Engineering
Communication Engineering
Computer Engineering
Economics
Electrical and Electronic Engineering
English Language
Engineering
Humanities
Industrial and Systems Engineering
Korean
Mathematics
Mechanical Engineering
The Catalog is an official Khalifa University document describing academic programs, course offerings, faculty listings, policies, procedures, regulations and requirements of the University. Every effort has been made to ensure the accuracy of the information presented in this catalog. However, no responsibility is assumed for editorial, clerical or printing errors, or errors occasioned by mistakes. The University reserves the right to make changes without prior notice to the information contained in this publication, including the alteration of various fees, schedules, conditions of admission and credit requirements, and the revision or cancellation of particular courses or programs.

DISCLAIMER
Welcome to Khalifa University of Science, Technology and Research, to start on one of the most important and beneficial times of your life - your university education. In tomorrow’s world, high quality education in engineering and science will be at a premium to address many pressing societal concerns, relating to energy, environment, health care, security, communications, transportation, civil infrastructure, and many others. The co-educational and multicultural community of scholars we are assembling at Khalifa University will prepare you to face these challenges, and to enter society prepared to make your unique contribution to the solutions demanded by them. In addition to a high quality grounding in technical fundamentals, technological leaders find that they need a variety of other attributes to succeed in the world, including the ability to communicate, the ability to work in teams, competence in carrying out technological work within economic and societal constraints, a sense of professional and personal ethics, managerial and business acumen, and the interest and capacity to serve others. We are dedicated to helping you develop and refine these skills.

Khalifa University is a dynamic institution that has a proven track record of providing high quality education and practical experience. The University strives to create a learning culture that exemplifies excellence in teaching and scholarship that emphasizes faculty-student interaction, that promotes lifelong learning, and that prepares individuals for leadership and service in the global society. A university has the responsibility to help each student develop as a complete and well-rounded person, and to aid him or her in maximizing potential and finding a career to pursue with passion and purpose. We are here to help you in this process.

We offer a diverse portfolio of degree programs that are designed to meet the criteria set by the appropriate national and international accreditation bodies. The faculty and staff are highly qualified, experienced, and dedicated professionals, who are always willing to impart their knowledge and experience to their students. The University campuses in Abu Dhabi and Sharjah have first class facilities, both inside and outside the classroom, which will make your learning experience productive and enjoyable.

This guide is designed to give you information and advice to make your academic planning easier. Decisions about what major to study, specializations, and course selection require careful consideration. Whatever study program you wish to pursue, this guide will help you plan your degree from your first year through to your final year.

If you need more information or advice, please take advantage of the experience and professional expertise of our faculty and administrative staff. Your academic advisor will be happy to give you the appropriate advice.

In my sixth year of leading Khalifa University, I look forward to meeting you on our campuses in Abu Dhabi and Sharjah, and to sharing the great adventure of university life with you and the rest of our community. I believe you’ll find KUSTAR to be an exciting, stimulating and supportive environment in which to shape your future.

Dr. Tod A. Laursen
President, Khalifa University
Academic Calendar 2015-2016

- **First / Last day of classes**
- **Holidays / Breaks**
- **Final Exams**

Islamic holidays are subject to change

<table>
<thead>
<tr>
<th>SUN</th>
<th>MON</th>
<th>TUE</th>
<th>WED</th>
<th>THU</th>
<th>FRI</th>
<th>SAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Faculty Reporting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>First Day of classes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>3rd Day of classes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Last Day of classes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Final Exams Begin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Last Day to Drop w/ "W"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

* Islamic holidays are subject to change.
The University
3.1 HISTORY OF KHALIFA UNIVERSITY

Khalifa University of Science, Technology and Research (KUSTAR) was inaugurated on 13 February 2007 by the President of the UAE, His Highness Sheikh Khalifa bin Zayed Al Nahyan. The board of Trustees which is chaired by His Highness General Sheikh Mohammed bin Zayed Al Nahyan the Crown Prince of Abu Dhabi and Deputy Supreme Commander of the UAE Armed Forces was announced on 26 February 2008. KUSTAR is an Abu Dhabi Government initiative and is owned solely by the Emirate of Abu Dhabi.

The University opened its current campus in Abu Dhabi in October 2008 to add to the campus in Sharjah (formerly Etisalat University College). The university’s future Abu Dhabi campus is currently being developed. The Sharjah branch campus has a very proud history that stretches back to 1989 and on 11 February 2008 was merged with the Khalifa University of Science, Technology and Research to form the foundation of KUSTAR.

Khalifa University offers a wide range of programs that are designed to be flexible, competitive, and intellectually stimulating. The programs at Khalifa University are currently offered through its College of Engineering.
3.2 BOARD OF TRUSTEES

Chairman- His Highness Sheikh Hamed bin Zayed Al Nahyan
Chairman, Abu Dhabi Crown Prince’s Court (CPC)

H.E. Eng. Hussain I. Al Hammadi (Member)
Minister of Education, UAE

H.E. Mohammed Hassan Omran (Member)
Chancellor, Higher Colleges of Technology (HCT)

H.E. Dr. Mugheer Al Khaili (Member)
Chairman, Health Authority of Abu Dhabi

H.E. Professor Elias Zerhouni (Member)
President, Global R & D, Sanofi

H.E. Ali Rashid Qanas Al Ketbi (Member)
Chairman, Tawteen

H.E. Sir John O’Reilly (Member)
Director General, Knowledge and Innovation

3.3 VISION AND MISSION

Vision
To be a leading international center of higher education and research in technology and science.

Mission
Khalifa University of Science, Technology and Research is an independent, non-profit coeducational institution, dedicated to the advancement of learning through teaching and research and to the discovery and application of knowledge. It pursues international recognition as a world class research university, with a strong tradition of inter-disciplinary teaching and research and of partnering with leading universities around the world.

The University endeavours to serve the Emirate of Abu Dhabi, UAE society, the region and the world by providing an environment of creative enquiry within which critical thinking, human values, technical competence and practical and social skills, business acumen and a capability for lifetime learning are cultivated and sustained. It sets itself high standards in providing a caring, rewarding and enriching environment for all of its students and staff. It ensures that its graduates, on entering the workplace, form a superlative cadre of engineers, technologists and scientists, capable of making major contributions to the current and future sectors of UAE industry and society as leaders and innovators.

The University insists on the highest world class standards of academic excellence in all that it does. It complements other universities in the region by providing, in its chosen areas of activity, the best teaching and research available in the region. It strives to meet demands for expansion while never compromising on quality.
Khalifa University is licensed by the UAE Ministry of Higher Education and Scientific Research (MOHE). All academic programs offered by the University are recognized by MOHE and have been awarded either full or initial accreditation status.

Khalifa University is a not-for-profit institution. All the financial needs of the University are supported by the Government of Abu Dhabi. The University has two purpose built campuses; one in Abu Dhabi, where the central administration for the University is located, and the second one in Sharjah.
Admission Requirements and Fees
Khalifa University admits female and male students from the UAE and beyond. The admissions rules and requirements stated in this section are the basis on which a prospective student’s application is assessed. Details of the admissions requirements, placement tests, recognized secondary school certificates, and the process for transfer students are set on the next page.
4.1 GENERAL ADMISSIONS REQUIREMENTS

Admission to Khalifa University is competitive. Students are admitted to the University’s undergraduate programs solely on the basis of an assessment of their ability to successfully pursue University level work as evidenced by their academic record.

Students seeking Admissions to the University must meet the following minimum criteria:

- Maximum age of 20 years.
- UAE Secondary School Certificate (SSC) in Science with a minimum overall achievement of 80% unless the applicant is from one of the following systems.

<table>
<thead>
<tr>
<th>School System</th>
<th>KU Admission Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Science Placement from ATHS (ASP)</td>
<td>Minimum overall achievement of 75%</td>
</tr>
<tr>
<td>ATHS Engineering science clusters:</td>
<td></td>
</tr>
<tr>
<td>- ESG: Engineering Science General</td>
<td>Minimum overall achievement of 75%</td>
</tr>
<tr>
<td>- ESE: Engineering Science Energy</td>
<td></td>
</tr>
<tr>
<td>ATHS following clusters</td>
<td>Minimum overall achievement of 80%</td>
</tr>
<tr>
<td>- AEM: Applied Engineering Mechanical</td>
<td></td>
</tr>
<tr>
<td>- AEE: Applied Engineering Electrical</td>
<td></td>
</tr>
<tr>
<td>- ICT: Information and Communication Technology</td>
<td></td>
</tr>
<tr>
<td>- HST: Health Science and Technology</td>
<td></td>
</tr>
<tr>
<td>STS* (Secondary Technical School)</td>
<td>Minimum overall achievement of 90%</td>
</tr>
<tr>
<td>*Conditions Apply</td>
<td></td>
</tr>
<tr>
<td>The International School of Choueifat</td>
<td>Minimum overall achievement of 75%</td>
</tr>
</tbody>
</table>

Full Admission

In addition to the minimum criteria mentioned above, to be considered for full-admission applicants must satisfy the following requirements:

- Proof of English language proficiency which may take one of the following forms:
 - A TOEFL minimum score of 79 on the Internet Based Test (IBT).
 - An IELTS minimum score of 6.0 (out of 9).
 - A composite IELTS minimum score of 6.0 (out of 9) may also be considered for admission as defined below
 - TOEFL and IELTS scores are valid for two calendar years only and must be sent directly by the institution to Khalifa University.
 - Composite IELTS Score: A student may use multiple IELTS test scores from the most recent six months to produce a “composite” IELTS score of 6.0 to enter Khalifa University’s undergraduate program. Composite means that they can take their highest scores from each of the four bands tested (reading, writing, speaking and listening) from any of the tests they have taken in order to meet the 6.0 IELTS requirement in English. There may be no score lower than 5.0 in any of the four areas (bands).
- Pass a placement test in Mathematics (Math 1-Basic Algebra and Math 2-pre-Calculus) and physics.
- Pass a personal interview conducted in English.
Conditional Admission

Candidates who do not meet the requirements for full admission as Freshmen, but are judged to have the potential to reach these standards may be offered conditional admission. Conditionally admitted students participate in the University’s Preparatory Program.

The Preparatory Program is an intensive full-time program of developmental study in academic and technical English, Mathematics, Physics, Chemistry, and Information Technology required for success in a KUSTAR degree program. Students who successfully complete the program are offered full admission into the degree programs.

Students who have the required proof of English proficiency for full admission but are asked to take preparatory technical courses may be approved to take a limited number of credit courses that will count toward the degree (a maximum of 15 credits). Students who are not able to achieve the standard for successful completion of the Preparatory Program will have their conditional admission withdrawn and they will be asked to leave the University.

4.2 ENTRY ASSESSMENT

Students who do not have proof of English proficiency for full admission are required to take a University administered test of English. In addition, students in all engineering programs must sit for required placement tests in mathematics (Basic Algebra and Pre-Calculus) and Physics.

In addition, all students must participate in a personal interview conducted in English by a KUSTAR Admission Committee. Students will be assessed on: A minimum standard of ability to communicate in English, their familiarity with the relevant profession, their commitment to pursue a professional degree program, their reasons for wanting to attend Khalifa University, and their potential for assuming a leadership role in the UAE evolving knowledge-based economy.

4.3 RECOGNIZED SECONDARY SCHOOL CERTIFICATES

Secondary school certificates are awarded either by ministries of education or by private schools and institutions. Khalifa University only recognizes UAE Secondary School Certificates or their equivalent, as approved by the UAE Ministry of Education. It is the responsibility of all applicants to have their school certificates fully attested by the UAE Ministry of Education.

The following is a list of some common secondary school certificates that are considered for admission:

- UAE National General Secondary School Certificate
- UAE Institute of Applied Technology (IAT) Certificate
- UK Board(s) Certificates: IGCSE / GCSE / GCE
- American High School Diploma
- International Baccalaureate (IB)
- US and Canadian Advanced Placement (AP)
- Lebanese Baccalaureate
- Indian Board(s) Certificates: Senior Secondary School Certificate
- Pakistani Board(s) Certificates: Higher Secondary School Certificate

The Undergraduate Admission Criteria for students holding an American Diploma, UK Board Certificates or the International Baccalaureate include the following minimum requirements:

American System

- Complete 12 years.
- Minimum GPA 3.0 (or equivalent) on scale of 4.
- Mathematics in 3 of last 3 years, Physics in 2 of last 3 years, and one additional science in 1 of last 3 years.
- At least 1 science in last year.
British System

> Total of 8 courses (5 O level + 3 AS/A levels) including Mathematics, Physics and one additional science.
> Mathematics at AS level or higher.
> Minimum grade of C in all courses.

International Baccalaureate - IB

> IB diploma with minimum score of 4 (out of 7) in all courses.
> Courses should include Mathematics, Physics, and one additional science, with Mathematics being at a higher level.

Advanced Standing Credit

Khalifa University may award advanced standing credit for certain academic work completed prior to enrollment at the University. This includes sufficiently high scores on some national/international secondary school examinations such as the College Board Advanced Placement (AP), International Baccalaureate (IB), and Advance “A” Level GCE (General Certificate of Education). This may make it possible for a student to complete the Bachelor’s degree in less than the normal duration or take other courses.

Advanced Standing Credit may only be granted after the student has been fully admitted as a freshman to Khalifa University. All students who would like to be considered for advanced standing credit must complete the Advanced Standing Credit Evaluation form at the Registration Office and provide either the original score certificate or an official copy from the appropriate examining agency. Each student will be evaluated on a case-by-case basis. All students must submit their request for advanced standing credit evaluations within the first semester of their freshman year at Khalifa University. Credits earned through “Advanced Standing” are considered “transfer credits” for degree requirement purposes.

College Board Advanced Placement (AP)

Khalifa University grants credit for a score of 4 or 5 on certain College Board Advanced Placement (AP) exams. The University does not grant credit for secondary school courses teaching AP curricula, or partial credit for lower scores. If the AP exam is taken more than once, the higher score will be counted.

Details of credit for various exams appear below:

<table>
<thead>
<tr>
<th>AP Exam</th>
<th>Score</th>
<th>Receive Credit For</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math: Calculus AB</td>
<td>4/5</td>
<td>MATH 111</td>
</tr>
<tr>
<td>Math Calculus BC with AB sub-score</td>
<td>4/5</td>
<td>MATH 111</td>
</tr>
<tr>
<td>Math: Calculus BC</td>
<td>4/5</td>
<td>MATH 111, MATH 112 via credit-by-examination</td>
</tr>
<tr>
<td>Physics A or B</td>
<td>Any</td>
<td>No Credit</td>
</tr>
<tr>
<td>Physics C Mechanics</td>
<td>4/5</td>
<td>PHYS 121</td>
</tr>
<tr>
<td>Physics C Electricity, Magnetism</td>
<td>4/5</td>
<td>PHYS 122</td>
</tr>
<tr>
<td>Chemistry</td>
<td>4/5</td>
<td>CHEM 115</td>
</tr>
<tr>
<td>Psychology</td>
<td>4/5</td>
<td>HUMA 140</td>
</tr>
<tr>
<td>Computer Science A</td>
<td>4/5</td>
<td>ENGR 112</td>
</tr>
</tbody>
</table>

International Baccalaureate

Khalifa University grants credit for a score of 5 or higher on certain Higher Level (HL) International Baccalaureate (IB) exams. The University does not grant credit for secondary school courses teaching IB curricula, or partial credit for lower scores. If the IB exam is taken more than once, the higher score will be counted.
Details of credit for various exams appear below:

<table>
<thead>
<tr>
<th>HL Exam</th>
<th>Score</th>
<th>Receive Credit For</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td>5/6/7</td>
<td>MATH 111, MATH 112 via credit-by-examination</td>
</tr>
<tr>
<td>Physics with Magnetism</td>
<td>5/6/7</td>
<td>PHYS 121 via credit-by-examinations,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 122 via credit by examinations</td>
</tr>
<tr>
<td>Chemistry</td>
<td>5/6/7</td>
<td>CHEM 115</td>
</tr>
<tr>
<td>Psychology</td>
<td>5/6/7</td>
<td>HUMA 140</td>
</tr>
<tr>
<td>Computer Science</td>
<td>5/6/7</td>
<td>ENGR 112</td>
</tr>
</tbody>
</table>

Advance “A” Level GCE (General Certificate of Education)
Khalifa University grants credit for a grade of B or higher on certain A-Level exams. The University does not grant partial credit for lower grades. If the A-level exam is taken more than once, the higher grade will be counted.

Details of credit for various exams appear below:

<table>
<thead>
<tr>
<th>A-Level Exam</th>
<th>Grade</th>
<th>Receive Credit For</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td>B/A</td>
<td>MATH 111, MATH 112 via credit-by-examination</td>
</tr>
<tr>
<td>Physics</td>
<td>B/A</td>
<td>PHYS 121 via credit-by-examinations,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 122 via credit by examinations</td>
</tr>
<tr>
<td>Chemistry</td>
<td>B/A</td>
<td>CHEM 115</td>
</tr>
<tr>
<td>Psychology</td>
<td>B/A</td>
<td>HUMA 140</td>
</tr>
<tr>
<td>Sociology</td>
<td>B/A</td>
<td>HUMA 141</td>
</tr>
<tr>
<td>Computer Science</td>
<td>B/A</td>
<td>ENGR 112</td>
</tr>
</tbody>
</table>

4.4 APPLICATION DOCUMENTATION REQUIRED

Documents required for UAE nationals admissions:
1. A completed NAPO online application form (priority will be given to those who have KU as their first choice).
2. When the candidates are invited to sit for the admission tests, they must provide the following documents:
 > Copy of High School certificate. Private Schools Students have to submit copies of grade 10 and 11 certificates.
 > British System Students have to submit certificates of their all O level, AS and A levels if any. In case the final certificates are not issued yet, a letter of predicted grades from school is required.
3. Copy of TOEFL IBT or Academic IELTS if any.

Documents required for non-UAE national admissions:
1. A completed KU online application form.
2. A Copy of High School certificate.
 > Private Schools Students have to submit copies of grade 10 and 11 certificates.
 > British System Students have to submit certificates of their all O level, AS and A levels if any. In case the final certificates are not issued yet, a letter of predicted grades from school is required.
3. Copy of TOEFL IBT or Academic IELTS if any.
5. Valid passport (2 copies) with visa permit for UAE residents.
The Khalifa University Admissions Committee recommends academically able applicants to the University management who make the final admissions decision. Successful applicants are notified of their admission and asked to confirm their intent to enroll.

A student who has completed twelve or more credits at an accredited or recognized institution following graduation from high school may be considered for admission as a transfer student.

Admission as a transfer student is highly competitive and is based on the number of students that can be accommodated in a particular program or level of study. The decision to admit a transfer student is based on the student’s record of achievement in both secondary and university studies.

The following rules apply:

- Only students transferring from a federal or licensed institution in the UAE or a recognized foreign institution of higher learning (as identified by the UAE Ministry of Higher Education and Scientific Research) are eligible for admission.
- Transfer applicants must meet the English language proficiency requirements in effect for the Term in which they intend to enroll.
- Official transcripts must be submitted from all previous institutions attended. The applicant must have a minimum cumulative GPA of 2.0 for all courses completed at the institution from which he/she is transferring.

If a transfer student is admitted, the student may request to transfer courses and credits (not grades) from the student’s previous institution to Khalifa University. This request and all supporting documents must be submitted at least one week before the start date of the first semester of enrollment at Khalifa University.

A decision to accept a course in transfer will be provided before the end of the add/drop period of that semester. The decision to accept a course in transfer is discretionary and will be based on two factors: a review of the content and level of the course under consideration (as described below) and an assessment of the student’s overall academic performance at Khalifa University.

Current Students

Currently enrolled Khalifa University students may request pre-approval to take course(s) for credit at another federal or licensed institution in the UAE or a recognized foreign institution of higher learning (as identified by the UAE Ministry of Higher Education and Scientific Research). This request and all supporting documents must be submitted at least one month prior to the student taking the course(s) at the other institution. A decision will be provided no later than two weeks from receiving the request. The decision to approve a course is discretionary and will be based on two factors: a review of the content and level of the course under consideration (as described below) and an assessment of the student’s overall academic performance at Khalifa University. Taking a course for credit at another institution may not be used to avoid the University’s progression rules or the consequences of poor performance in other Khalifa University courses. Once the student completes the approved course(s) at the other institution then he/she should apply for credit transfer evaluation as described below.
Credit Transfer Evaluation

Transfer evaluations are done on a course by course basis. Students who request a transfer course evaluation must provide information about the course from the official catalog, including course descriptions and course syllabi. In order to consider a course for transfer, the student must have earned a grade of C (2.0) or better.

Any decision to approve a course transfer will include an assessment of the student’s overall academic performance at Khalifa University. High marks in transfer coursework should be matched by high performance - at the student’s previous institution (for transfer students) or at Khalifa University (for currently enrolled students). Transfer courses may not be used to avoid the University’s progression rules or the consequences of poor performance in other Khalifa University courses. For example, a student who fails a Khalifa University course may not complete the course by taking it in transfer at another university.

Courses are evaluated on the basis of their content and level. In order for a course to transfer to Khalifa University, it must be equivalent to an existing Khalifa University course in terms of content and level of difficulty. These evaluations are conducted by knowledgeable faculty whose decisions are final.

The maximum number of approved transfer credits allowed must be less than 50% of the total credits required by the student’s degree program at Khalifa University.

Only credits transfer, not grades. Credits accepted in transfer are not used in calculating a student’s grade point average at Khalifa University. Credit will not be granted twice for substantially the same course taken at two different institutions.

Transfer credits will not be given for work experience, vocational or training courses or coursework that is considered pre-collegiate.

The above criteria also apply to transfer credit evaluations involving articulation agreements between Khalifa University and other institutions of higher education.

Transfer students must also meet all graduation requirements as specified in the University Degree Requirements (Section 5.3) and Graduation Residence Requirements (Section 5.17) of this Catalog.

4.7 APPLICATION PROCESS

Application

Prospective students can and obtain information about the University by visiting the Website: http://www.kustar.ac.ae and apply by completing a NAPO online application form (for UAE Nationals).

The academic year at Khalifa University is made up of two semesters, (Fall and Spring) and a Summer session. In general, the Fall Semester runs from September through early January; the Spring Semester from February through early June; and the Summer session in June and July.

The majority of the students enter in Fall. The availability of admission to Khalifa University in Spring is limited. Consult the Website or the Office of Admission to confirm which programs will accept applications for Spring.

The Office of Admission handles admissions to all the University colleges and the study programs they offer.

Application Form for International Students

Khalifa University on-line application form is available on the Web at http://www.kustar.ac.ae.

On-line application can be made to any program at Khalifa University. The application can be used by International applicants, as well as special, visiting or exchange students.

All admission decisions by the University are taken in good faith on the basis of the statements on the application form. If the University discovers that the applicant has made a false statement or has omitted significant information on the application form, it may withdraw its offer of admission or terminate the applicant’s registration.
Details of student scholarships and incentives at Khalifa University of Science, Technology and Research are outlined below. The University reserves the right to change its fees, scholarships and incentives at any time.

Full Scholarships covering all direct academic costs (tuition, books, lab equipment and supplies, etc.) are provided to all enrolled UAE-national students and some highly-qualified non-UAE nationals. To retain their full scholarship, non-national students must be registered full time and maintain a Cumulative Grade Point Average (CGPA) of 3.0.

Non-national students admitted prior to Fall 2012 who do not maintain a CGPA of 3.0 in a semester will be charged 20% of the fees for the subsequent semester (currently AED 10,000) until they raise their CGPA to 3.0.

Beginning with students admitted for Fall 2012, highly qualified non-UAE nationals will be offered full University scholarships. These scholarships are renewable for as long as the recipient maintains a minimum 3.0 cumulative grade point average each semester.

If a recipient’s grade point average falls below 3.0, the student’s scholarship will be reduced as follows:

- **2.99 – 2.50**: The scholarship will be reduced to 60% of the tuition fee per semester until the student’s grade point average increases to 3.0 and the full scholarship is restored.

- **2.49 – 1.00**: The scholarship will be reduced to 20% of the tuition fee per semester until the student’s grade point average increases to either 2.5 or 3.0, with the corresponding increase in the value of the scholarship.

Partial Scholarships: Additional qualified non-UAE nationals may be considered for a partial scholarship equal to 50% of the tuition fee. These partial scholarships are renewable for as long as the recipient maintains a minimum 3.0 cumulative grade point average each semester. If a recipient’s grade point average falls below 3.0, the student’s scholarship will be reduced as follows:

- **2.99 – 2.50**: The scholarship will be reduced to 30% of the tuition fee per semester until the student’s grade point average increases to 3.0 and the 50% scholarship is restored.

- **2.49 – 1.00**: The scholarship is suspended and the student must pay the full tuition fee per semester until the student’s grade point average increases to either 2.5 or 3.0 with the corresponding increase in the value of the scholarship.

Monthly Incentive Payments are provided to eligible students based on their Cumulative Grade Point Average (CGPA). UAE national students are awarded a monthly incentive ranging from AED2000-8000. Presently, a minimum CGPA of 2.0 is required to receive an incentive. Non-national students may receive an incentive if they have a minimum CGPA of 3.8 and are among the top twenty of all undergraduate students in the University (based on CGPA).
Direct Entry Incentive Scheme

Khalifa University aims to attract more applicants that can be directly admitted without the need for a Preparatory Program. The “Direct Entry Reward Scheme” is one means of attracting and retaining more direct entry students.

The details of the scheme are as follows:

> A directly admitted student who is a UAE National, will be eligible for a maximum reward of AED 60,000.

> The reward will be paid out to the student as follows:

 - AED 30,000 at the start of the first semester of registration.
 - AED 30,000 at the start of the second semester of registration provided that the student achieved a CGPA of 3.0 or above.

> Student must be on full-time scholarship.

> Student undertakes to return the reward if he/she does not complete his/her studies at Khalifa University.

Fees

The undergraduate tuition fee is AED 3,333 per credit. On average, students register for 15-16 credits per semester. Additional fees may be charged for non-academic costs such as accommodation, meals, transportation, personal computer repairs, etc.
Degree Requirements, Registration, and Academic Rules and Regulations
Khalifa University offers curricula, through its College of Engineering, leading to the following undergraduate degrees:

College of Engineering
- Bachelor of Science in Aerospace Engineering
- Bachelor of Science in Applied Mathematics and Statistics
- Bachelor of Science in Applied Mathematics and Statistics – Financial Mathematics
- Bachelor of Science in Applied Mathematics and Statistics – Mathematical Biology
- Bachelor of Science in Biomedical Engineering
- Bachelor of Science in Civil Engineering
- Bachelor of Science in Communication Engineering
- Bachelor of Science in Computer Engineering
- Bachelor of Science in Computer Engineering – Software Systems
- Bachelor of Science in Electrical and Electronic Engineering
As English is the medium of instruction in all Khalifa University degree programs, students must have a working knowledge of academic and scientific English. In addition, students must be able to use mathematics to solve abstract problems and describe observable phenomena, and possess necessary computing skills for the study of professional engineering. Students who lack these skills but show promise of success in Khalifa’s professional engineering degree programs may be conditionally admitted to the Preparatory Program.

The Preparatory Program consists of a full-time program of intensive study in English, mathematics, physics, chemistry, computer technology, and necessary study skills. Based on the results of placement testing, students are enrolled in coursework appropriate to the level of their academic achievement. Students are regularly assessed to determine if they meet program requirements for continued study in the Preparatory Program or for full admission to the degree program.

Based on an assessment of a student’s overall achievement in the Preparatory Program, a student with required English proficiency may be allowed to take appropriate degree courses to a limit of 15 credits.

To be fully admitted to the degree program, a Preparatory student must achieve a minimum composite score of 6.0 on the IELTS examination (or equivalent IBT TOEFL score of 79) and demonstrate sufficient progress in mathematics, physics, chemistry and computing.

A student is required to adhere to the graduation requirements stated in the Catalog in effect for the year in which the student was admitted to a degree program, or for the year in which the student declared their academic major, or in the Catalog that was effective for the academic year when the student graduates. Degree and major requirements change from time to time and there are established procedures for making such changes that protect the University’s integrity and the individual student’s welfare. In case of major changes in course offerings, the Dean determines the equivalent graduation requirements to be applied. Khalifa University will confer the bachelor’s degree when the following requirements have been met:

1. Successful completion of the University General Education Requirements described in this Catalog.
2. Satisfactory completion of the requirements of the chosen College and degree program as described in the appropriate sections of this catalog.
3. A minimum cumulative grade point average (CGPA) of 2.00.
4. Completion of the last two (2) years in residence at the University. Transfer and exchange students must also meet the additional conditions specified in the Graduation Residence Requirements section of this Catalog.
5. Students completing programs with major and minor components must satisfy the requirements specified by the College/Department offering the major/minor.
6. Students registered for a double major must satisfy the requirements of each major as specified by the College/Department offering the major.
7. Candidates for degrees must apply on-line to graduate during the first week of classes for the semester in which the student is expected to graduate. The Registration Office initiates the process for graduation only after the application has been submitted by the student. Students must complete all degree requirements by the end of the semester for which they apply to graduate. If a student fails to meet all degree requirements, he/she must reapply to graduate later.
To receive a bachelor’s degree from Khalifa University, a student must complete a minimum of 140 semester credit hours. Students should consult with their college or department advisor for information on specific credit requirements. Consultation with the academic advisor is essential, as it will also enable the student to complete the required degree credits within four years.

Graduation Residence Requirements

Candidates for an undergraduate degree program must comply with the following residence requirements:

1. Unless otherwise approved by the Dean of the student’s college, students must complete their last two academic years at Khalifa University;
2. Students registered on a University recognized semester exchange program must complete their final academic year in residence at Khalifa University;
3. Transfer students must complete more than 50% of the intended degree program credit hours in residence at Khalifa University. These credits must include a minimum of 36 credit hours from the intended degree program courses at the 300-level or above.

Community Service

Students admitted in Fall 2014 and thereafter, are required to complete 20 hours of community service per year to a maximum total of 80 hours during the duration of their degree program. No credits are awarded for community service but completion of the requirement is noted on the student’s transcript.

Enrollment at Other Universities While a Khalifa University Student

All enrolled students are expected to focus exclusively on their courses and degree program at Khalifa University. As all students are on scholarship, the objective of their study is to complete the degree they have chosen and to attain the grade point average required by their scholarship. Except as noted below, students are not permitted to pursue courses or degrees offered at another college or university even if it is at the student’s own expense and during the student’s own time.

Students who will be away from the campus in the summer and wish to take coursework at another college or university must have prior approval from the Dean of their college. Pre-approved coursework, taken at colleges and universities that are accredited or recognized by the UAE Ministry of Higher Education and Scientific Research, equivalent to courses offered at Khalifa University may be accepted in transfer. Students who apply for permission to take a course at another university must be in good academic standing (not on probation), not have transferred more than 50% of the total number of credits required for the degree, and not be in senior standing. Students who have failed a Khalifa University course may not complete the course by taking it in transfer at another university.

Students may earn credit while enrolled in officially sponsored exchange or study abroad programs. All students must complete their final academic year in residence at Khalifa University.

5.4 GENERAL EDUCATION REQUIREMENTS

Purpose

The purpose of the General Education Requirements (GER) at Khalifa University is:

> to provide all undergraduate students, regardless of their majors, with the foundation they will need to be informed members of society;
> to help students develop intellectual skills, practical skills, and emotional and aesthetic sensitivities;
> to prepare them to think critically, to feel, and to act thoughtfully and competently in a complex and diverse world;
> to help students understand the values inherent in their culture and to be aware of other cultural traditions, values, and beliefs;
> to enable the students to enjoy a life dedicated to learning and creativity in a continually changing world.
All students entering Khalifa University as freshmen or undergraduate transfer students must satisfy the General Education Requirements (GER). Students should check with their academic advisors to see if their College has any additional requirements that go beyond the basic GERs, or whether certain programs will require them to undertake specific courses or to follow a particular order.

The following General Education Requirements are required for all students admitted to the starting Fall 2012:

English Communication (8 credits)
- ENGL111 English Communication I (4 credits)
- ENGL112 English Communication II (4 credits)

Math and Science (24 credits)
- MATH 111 Calculus I (4 credits)
- MATH 112 Calculus II (4 credits)
- MATH 211 Differential Equations and Linear Algebra (4 credits)
- CHEM 115 Introduction to General Chemistry for Engineers (4 credits)
- PHYS 121 University Physics I (4 credits)
- PHYS 122 University Physics II (4 credits)

Business Studies (6 Credits)
- BUSS 201 Fundamentals of Accounting and Finance (3 credits)
- BUSS 301 Inside Organizations (3 credits)

Humanities Electives (12 Credits)
A total of 4 courses (3 credits each) in the Humanities and Social Sciences are required. At least one course must be from the area of Islamic Culture and Studies. These courses include: Islamic Culture, Islamic History, Sciences in Islam, Introduction to Islamic Law, and Islam and Modernity. Other courses in this category may be offered. Students should check with the Registration Office for an updated list.

5.5 MAJORS, MINORS AND DOUBLE MAJORS

Academic Majors : Rules and Regulations

General Information

- A major is a structured program of study in an academic or professional discipline which leads to a Bachelor’s degree. In order to fulfill the requirements of a major, students are required to select subjects as specified by the department offering the major. A major comprises at least 30% of the total credits required by the Bachelor’s degree program.
- Every degree awarded by Khalifa University requires students to complete a major field of study. All majors include a specific number of credits and a particular sequence of courses. Students must meet the minimum course and grade requirements to be awarded their bachelor’s degree with a desired major.
- Academic majors and their requirements are published in the University Catalog.
- Students are required to follow the major requirements that are current at the time, the student’s choice of major is effective.
Internship

All students are required to complete an internship experience. The Internship is a period of work placement conducted with an appropriately selected organization. This requires a carefully planned work experience that will match the content covered in the student’s program of study. Engineering students at Khalifa University must successfully complete 8 continuous weeks of full-time internship placement in order to graduate. Students earn one credit for internship, which is assessed on a pass-fail basis.

The Career and Internship Coordinator is responsible for managing the internship program; this includes sourcing appropriate internship opportunities. However, students can submit names and contact information of organizations they would like to intern with.

Complete information about internship requirements can be found in the Internship Handbook.

Declaring a Major/Change of Major

- Students should make their initial choice of major after completing 15 degree credits. However, they must make their final choice of a major before reaching Junior standing (60 credits).
- To initially request a major, a student must file an application with the Registration Office. The application form must be approved by the student’s advisor, and the head of the academic department that offers the major.
- To change an existing major, a student must file a new application with the Registration Office. This application must be approved by the student’s advisor and by the head of the academic department of both the student’s current major and the student’s requested major.
- Changes of major are subject to space being available in the sought major.

Concentration

Concentrations are best thought of as a grouping of courses which represent a sub specialization taken within the major field of study. A concentration at Khalifa University leads to a specialized award or degree and will be specified on the diploma and the student’s academic record (transcript).

Track

A track is a narrow area within the major field of study which the student may choose to follow but does not lead to a specialized award or degree and is not listed on the diploma. Tracks are normally used to help students focus their selection of advanced elective courses within their selected major. The track will only be noted on the student transcript once the requirements are completed and the bachelor's degree is awarded.

Academic Minors

Academic minors afford students the opportunity to pursue a limited but structured field of study outside their major. The minor may be a truncated version of a major or a distinctive subset of a discipline. Minors are not available in every field of study. In general, a minor requires no fewer than 15 and no more than 21 credits, with at least 12 credits in upper level coursework (300-400 level). No more than 6 credits or two courses may be used to satisfy the student’s minor and major fields of study. All courses taken to fulfill minor requirements must be passed with a minimum grade of C. Students must follow requirements for the minor that were in effect when the student’s application to pursue a minor was approved.

- Minors are optional. A minor must be created by an academic department and approved by University management.
- An undergraduate student may not complete a major and a minor in the same program.
- Students must apply to pursue a minor before reaching senior standing (90 credits). An application to pursue a minor must be approved by the student’s advisor, by the head of the student’s major department and the head of the department which offers the minor.
- A student may have a major in one College and a minor in another. In this case the student must complete the general education requirements of the College of his/her major. The student is not required to meet the general education requirements of the College of his/her minor.
- A student earns a minor only when concurrently completing all major and degree requirements. A student may not be enrolled solely to complete requirements for a minor.
A student wishing to graduate with a double major must apply for a second major field of study by the time the student has earned 60 degree credits. A student must also have a cumulative grade point average of 3.0. The student’s application must include a proposed study plan for both majors, with no more than 18 credits applied to both majors.

- A student wishing to graduate with a double major must apply for a second major field of study by the time the student has earned 60 degree credits. A student must also have a cumulative grade point average of 3.0. The student’s application must include a proposed study plan for both majors, with no more than 18 credits applied to both majors.
- The student’s application for a double major must be approved by the chairs of both departments concerned and the Dean(s) of the college(s).
- Students approved for a double major will have an advisor in each of the two approved major programs.
- To graduate with a double major, the student must meet departmental requirements for each major.

Double Major

A student who wishes to complete a second major concurrently with his or her primary major must obtain advanced written permission from the appropriate department heads and Dean. So as not to delay graduation, students seeking a second major must be academically well qualified and have a minimum cumulative grade point average of 3.0. In addition, students must apply for a second major by the time they reach junior standing or 60 credits.

Applying to Graduate

One year prior to their expected graduation date, each student shall run an on-line degree audit and review it with their academic advisor. This audit will confirm all remaining unfulfilled degree requirements and guide student registration for their remaining terms of enrollment. Students are required to submit an on-line application to graduate, prior to the end of the first week of instruction, in their final semester of enrollment. A final graduation audit, conducted after grades are submitted for the student’s final semester of study, will determine if the student has satisfied all requirements for the degree including: major, minor, double major or concentration as applicable, and cumulative grade point average.

5.6 VARIATION TO ACADEMIC PROGRAM

In exceptional circumstances, a student may petition the Department Chair of the major/minor program of study for approval of changes to the prescribed plan of study. Small changes may be approved by the Department Chair. Significant changes require approval of the Department Chair and the College Curriculum Committee.

Students seeking an exception to their official plan of study must submit a signed Variation to Academic Program Form to the Registration Office. When it becomes necessary to request a deviation from the prescribed plan of study, students shall consult their academic advisor prior to submitting the Variation to Academic Program Form to the Registration Office.

In preparing the form, students should be mindful of the following:

1. The course to be substituted must be in the same area as the required course or in a closely related area.
2. Substitution of a course for a previously failed required course is seldom granted.
3. A required course that is not scheduled during a given semester is not acceptable for a course substitution.

Any approved course substitutions and associated pre-requisite requirements affected by the approved Variation to Academic Program must be satisfied.
All degree requirements must be completed within seven years of admission to Khalifa University as an undergraduate degree student, inclusive of any leave. A student in good academic standing is allowed no more than two consecutive semesters leave. A student who is out of the University, for any reason, for more than two consecutive semesters must submit a new application for re-admission, to the Admissions Office, prior to the semester or summer term for which registration is sought. Students who are re-admitted are required to comply with the Catalog requirements in effect at the time of re-admission.

5.7 TIME LIMIT ON DURATION OF STUDY AND RE-ADMISSION

5.8 ACADEMIC ADVISING AND REGISTRATION

Academic advising is integral to effective learning and academic progress throughout the student’s undergraduate program. Khalifa University is composed of colleges that serve as “academic homes” for each student. The student is assigned to one of the colleges based on his/her intended major/program. Full-time faculty members from the assigned college act as the academic advisor and work with the student from the beginning of his/her academic career.

Academic advisors provide information about selecting courses and areas of specialization and are knowledgeable about regulations and requirements. They also provide resources, guidance, and support to enable students to explore, define, and realize their aspirations throughout their academic careers. Well-advised students acquire the knowledge needed to create and fulfill educational plans, and meet their goals for the future in a timely manner.

Academic Advising Guiding Principles

Both students and advisors have advising responsibilities. Advising is guided by the following principles:

- Effective academic advising can play an integral role in student development.
- Mutual respect and shared responsibility should govern the personal interactions between advisors and students.
- Students and advisors must prepare for, actively participate in, and take appropriate action following advising sessions.
- Advising information provided to students must be accurate, accessible, and timely.
- Academic advising should encourage students to explore many possibilities and broaden their educational experience.
- Academic advising should encourage a positive attitude toward lifelong learning.
- Academic advising should use all available resources and means to provide advising tailored to the individual needs of students.
- Academic advisors should keep records of the advising sessions held with a student.

Guidelines for Graduating in Expected Time

Khalifa University has a strong commitment to ensuring that students graduate with a degree in the expected time. Students are encouraged to follow these guidelines to earn their degrees in the minimum time required.

- Consulting an advisor should be the first priority. Students should confirm with the advisor that their academic preparation is appropriate for the courses they plan to undertake. Transfer students should make sure that they know which credits will be transferable and plan accordingly. Students should seek help in planning course work to meet academic and career goals.
- Students should be certain they understand the requirements of their intended major as well as the options it will provide for future studies and employment.
- Students should be aware of the number of credits the degree program requires, and should make sure they fulfill one quarter of these each year. Credits may be taken in the fall, spring, and summer, but the annual total should equal at least 25 percent of the total credits needed to graduate. In addition, students should recognize that a degree requiring more than 120 credits will be difficult to complete in four years without undertaking substantial loads and/or summer sessions.
> Students should make sure that the courses they select will count toward the fulfillment of the University general education, major, and degree requirements. They should limit elective credits to the number the program allows.
> When students consider changing their major, or do not get admitted to the major program of their choice, they should consult an advisor, explore options, and find out how a change of major might affect their graduation plans.
> Students should make the most of course schedules and the plan of study for their degree program. They should plan to take required courses as soon as possible (as not all courses are offered every semester) and be flexible about course times. If a required course is not available, advisors can help determine an alternative.

Orientation Program

Newly admitted students participate in an orientation program that introduces them to various aspects of the Khalifa University community. During these programs the students plan an academic program, register for classes, learn about University resources and campus life, and meet with Khalifa University students, faculty, staff and new classmates. The orientation sessions are held before the fall semester and the spring semester.

Advising and Registration

In order to register each semester, students are required to meet with their faculty academic advisors to discuss their academic progress and obtain the faculty advisors’ approval for course selections. This process ensures that the student is on course to meet the graduation requirements of his or her particular degree program.

Change of Academic Advisor

Students may request a change of an assigned academic advisor when they are unable to resolve communication problems with their current advisor. Students must make an effort to resolve any differences before requesting a change. A request to change advisors should be made to the student’s Department Chair.

Faculty Office Hours

Faculty office hours are allocated for student’s consultation and advising. Faculty are required to show their office hours on their office doors. Students are encouraged to make use of these times for advising or for consulting with faculty on the courses they are teaching.

Plan of Study

The plan of study for a major or minor outlines the minimum approved courses, internships, projects, and academic requirements that must be completed to be eligible to graduate. Plans of study change over time, consequently students are required to follow the requirements of the approved plan of study that were in effect at the time of their admission to the academic major program or minor.

Students may petition the Department Chair for approval of changes to the prescribed plan of study. Small changes may be approved by the Department Chair. Significant changes require approval of the Department Chair and applicable University standing committee(s). Please refer to the University’s policy on Variation to Academic Program for additional information.

5.9 REGISTRATION

Registration Process

The Registration Office is responsible for the management of the registration process by which students enroll in classes. Registration information is provided to students before the registration period begins. New students are automatically registered for required courses. Continuing students register for classes on-line via the web.

Drop and add a course: Students are allowed to drop and/or add courses during the first week of the fall and spring semesters or during the first three days of a summer session. Such changes in course registration are not recorded on the students’ transcripts. Students interested in dropping or adding courses should consult with their respective academic advisors.
Through the registration process, students assume academic and financial responsibilities for the classes in which they enroll. They are relieved of these responsibilities only after formally terminating enrollment by dropping or withdrawing from classes in accordance with procedures and deadlines specified in the Academic Calendar each semester.

Course Restrictions, Prerequisites and Co-requisites

Enrollment in some courses may be restricted. For example, a course may be restricted to students with a specific major or require that a student have junior or senior level standing. An instructor’s approval may be required in some cases. These are referred to as “course restrictions”.

A program of study may also require that courses be taken in a certain order or taken together. A course that is required to be taken before another course is called a “prerequisite”. Students are not allowed to register for any course with a prerequisite unless the prerequisite course has been completed with a passing grade.

A “co-requisite” is a course that is designed to be taken together with another course.

- A co-requisite course may be satisfied if the student has previously completed it with a passing grade.
- Students may not drop a course if it is a co-requisite of another course in their schedule. In this case both courses would have to be dropped.
- If a student repeats a co-requisite course in which the student earned a grade of C- or lower, the companion course (if passed) does not have to be repeated.

Registration Deadlines

Khalifa University policies determine when students may enroll or adjust their enrollment in classes. The Registration Office has the most up to date information regarding these policies. The registration period and other important dates are published in the Academic Calendar section of this Catalog.

Registration Holds

Students will not be permitted to register if there is a “hold” on their registration record. Holds may be related to academic standing (probation or dismissal), non-academic offense violations (disciplinary), incomplete admission files (missing transcripts), or financial issues. Holds may also be placed on students who are not UAE citizens or residents and have not submitted required immigration documentation. To clear a hold, the student must contact the office that has issued the hold to find out what must be done to fulfill the obligation(s).

Auditing Courses

Subject to availability, students may, with the approval of the Department Chair and the permission of the instructor, audit undergraduate courses without credit. The permission of the Department Chair and instructor must be obtained prior to registration, and the student must register as an auditor. Registration priority will be given to matriculated degree-seeking students.

Auditors are required to follow the same registration procedures as persons taking the course for credit. Auditors do not receive grades or credits. Participation in class discussion and written work is permitted at the discretion of the instructor. A fee per credit hour may be charged. The status of Auditor cannot be changed after the course has begun. The University reserves the right to cancel an audit registration if the class size is excessively large.

Limitation of Courses Offered

The University reserves the right to cancel a course even though it is listed in the Catalog or scheduled to be offered. Notification of a cancelled course will be sent to any affected students at their University email address.

5.10 **WITHDRAWAL FROM COURSES AND FROM THE UNIVERSITY**

Withdrawal from Courses

Students are permitted to withdraw from courses. However, all students are expected to maintain full-time status by carrying a minimum load of 12 credits per semester. Under exceptional circumstances the Dean of the College may allow a student’s credit load to drop below 12 credits.
Any student voluntarily leaving the University before the close of the term must withdraw officially. A student initiates the withdrawal procedure and files the completed form at the Registration Office in person or by letter. A withdrawal is effective on the date when the form or letter is received by the Registration Office. A student who withdraws from the University after the first week and before the end of the 10th week of classes will receive the grade of (W) for all courses in progress. Students withdrawing after the 10th week and before the last day of classes will receive WP or WF in each course. Any student who leaves the University before the close of a semester without withdrawing officially will receive a failing grade (F) in each course for which he/she is registered.

Withdrawal from the University

Any student voluntarily leaving the University before the close of the term must withdraw officially. A student initiates the withdrawal procedure and files the completed form at the Registration Office in person or by letter. A withdrawal is effective on the date when the form or letter is received by the Registration Office. A student who withdraws from the University after the first week and before the end of the 10th week of classes will receive the grade of (W) for all courses in progress. Students withdrawing after the 10th week and before the last day of classes will receive WP or WF in each course. Any student who leaves the University before the close of a semester without withdrawing officially will receive a failing grade (F) in each course for which he/she is registered.

5.11 ACADEMIC YEAR

The academic year at Khalifa University consists of two regular semesters and a summer term. The two regular semesters which are referred to as the fall semester and the spring semester, consist of 15 weeks of teaching and final examinations period. The summer term lasts for five to six weeks of teaching. In the summer, a three credit course meets 75-90 minutes per day, five days per week. Because of the intense nature of summer coursework, students may take no more than two courses or seven credits.

5.12 CREDIT SYSTEM

The unit of measurement of academic work at Khalifa University is the credit hour. It ordinarily represents one lecture hour per week for one semester. A lecture hour has a nominal duration of fifty minutes. A sequence of three laboratory hours per week or two hours of problem solving sessions per week are considered to be the equivalent of one credit hour. Credit hours are also referred to as credits or semester credit hours.

5.13 COURSE TITLE, CODE, CREDIT VALUE AND DESCRIPTION

Each course offered at the University has a unique code, a title and a credit value. A list of courses offered may be found in this Catalog. In addition, the Catalog contains a brief description of the course content and any required prerequisites or co-requisites. The course code consists of four letters that reflect its discipline or field of study, followed by a three-digit number that indicates its level. The title of the course gives an indication of its content. The credit value of the course has three numbers; the first one gives the number of lecture hours per week, the second shows the number of laboratory or problem solving hours per week, and the third one gives the overall credit value of the course which will contribute to the particular degree requirements. The example below further explains the course code and value information.
The total degree credits for engineering programs are 140 semester credit hours. Students should consult with their academic advisor for information on specific credit requirements. Consultation with the academic advisor is essential, as it will also enable the student to complete the required degree credits within four years.

The appropriate course load for an undergraduate student is dependent on two factors: scholastic ability, as reflected by the student’s academic history, and available study time. Successful academic achievement usually requires about two hours of outside study for each hour spent in class. For example, enrollment in 16 credit hours would require about 32 hours of outside preparation per week.

A credit load of 15-18 credit hours constitutes a normal full semester program for undergraduates. A student must complete at least 15-18 credit hours per semester to finish a bachelor’s degree in four academic years. Enrollment in more than 18 credits in a semester requires advance written approval of the Dean of the student’s college. A standard load for an undergraduate student enrolled in a summer session is six to seven credit hours. Enrollment in more than seven credit hours in a single summer session requires advance written approval of the Dean of the student’s college.

The status of a student is determined by the number of credits for which he/she is registered at the close of add and drop period. To be considered full-time, a student must register for a minimum of 12 credit hours during each regular semester. A student enrolled for less than 12 credits will be considered a part-time student.

Undergraduate students admitted to a bachelor’s degree program are classified on the basis of earned semester credit hours:

<table>
<thead>
<tr>
<th>Earned Credit Hours</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 29</td>
<td>Freshman</td>
</tr>
<tr>
<td>30 – 59</td>
<td>Sophomore</td>
</tr>
<tr>
<td>60 – 89</td>
<td>Junior</td>
</tr>
<tr>
<td>90 or more</td>
<td>Senior</td>
</tr>
</tbody>
</table>
5.17 GRADUATION RESIDENCE REQUIREMENTS

Candidates for an undergraduate degree program must comply with the following residence requirements:

> Unless otherwise approved by the Dean of the Student’s College, students must complete their last two academic years in residence at Khalifa University. Students registered on KUSTAR recognized semester exchange program must complete their final academic year in residence at Khalifa University.

> Transfer students must complete more than 50% of the intended degree program credit hours in residence at Khalifa University. These credits must include a minimum of 36 credit hours from the intended degree program courses at 300-level or above.

5.18 GRADING SYSTEM

The grading system of Khalifa University is based on letter grades that are assigned according to the grading scheme adopted by the instructor in charge of a particular course. In order to assess the student’s academic standing, each letter grade is assigned a grade point on a four-point scale as set out below.

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Letter Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>4.00</td>
<td>Exceptional</td>
</tr>
<tr>
<td>A</td>
<td>4.00</td>
<td>Excellent</td>
</tr>
<tr>
<td>A-</td>
<td>3.70</td>
<td>Very Good</td>
</tr>
<tr>
<td>B+</td>
<td>3.30</td>
<td>Very Good</td>
</tr>
<tr>
<td>B</td>
<td>3.00</td>
<td>Good</td>
</tr>
<tr>
<td>B-</td>
<td>2.70</td>
<td>Good</td>
</tr>
<tr>
<td>C+</td>
<td>2.30</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>C</td>
<td>2.00</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>C-</td>
<td>1.70</td>
<td>Less than satisfactory</td>
</tr>
<tr>
<td>D+</td>
<td>1.30</td>
<td>Poor</td>
</tr>
<tr>
<td>D</td>
<td>1.00</td>
<td>Poor</td>
</tr>
<tr>
<td>D-</td>
<td>0.70</td>
<td>Poor</td>
</tr>
<tr>
<td>F</td>
<td>0.00</td>
<td>Fail</td>
</tr>
<tr>
<td>WF</td>
<td>0.00</td>
<td>Withdrawal Fail</td>
</tr>
</tbody>
</table>
Other letter grades are used at Khalifa University but do not have corresponding grade points, and hence not used in the calculation of the grade point average:

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Withdrawn (Between 2nd and 10th Week of Classes)</td>
</tr>
<tr>
<td>WP</td>
<td>Withdraw Passing (after the 10th week of classes through the last day of classes)</td>
</tr>
<tr>
<td>P</td>
<td>Pass (in a Pass/Fail Course) performance of D- or better</td>
</tr>
<tr>
<td>U</td>
<td>Fail (in a Pass/Fail Course)</td>
</tr>
<tr>
<td>I</td>
<td>Incomplete</td>
</tr>
<tr>
<td>IP</td>
<td>In Progress</td>
</tr>
<tr>
<td>AUD</td>
<td>Audit</td>
</tr>
<tr>
<td>EX</td>
<td>Exempt; no credit</td>
</tr>
<tr>
<td>TR</td>
<td>Transfer; credit counted</td>
</tr>
<tr>
<td>N</td>
<td>No Grade Submitted</td>
</tr>
</tbody>
</table>

5.19 GRADE POINT AVERAGE

The grade point average (GPA) is the cumulative numerical average which measures student academic achievement at the University. It is reflective of the credit hours the student has attempted and the grades that the student has earned. Therefore, the GPA is calculated by multiplying the grade value of the letter grade by the number of credit hours of the course. The result is the quality points that the student has achieved in the particular course. The sum of the quality points of the courses taken is divided by the total credit hours completed to obtain the GPA.

Grades without a corresponding grade value (W, WP, P, U, I, IP, AUD, EX, TR and N) are not included in the computation of the cumulative grade point average. A student transcript will have a semester GPA (SGPA) and a cumulative GPA (CGPA). The former only reflects the student’s performance in a particular semester, while the later reflects performance in all the attempted degree credits since the student’s first enrollment at the University.

A sample of GPA calculations follows.
At the end of each semester, student grade point averages are used in determining academic actions (probation, dismissal) and scholarship decisions (partial tuition payments). Although a student’s grade point average may subsequently change due to repeated courses, the academic action or scholarship decision taken at the end of each semester remains unchanged.

FALL SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hour</th>
<th>Grade</th>
<th>Grade Value</th>
<th>Quality Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 111</td>
<td>4</td>
<td>B</td>
<td>3.00</td>
<td>12.00</td>
</tr>
<tr>
<td>MATH 111</td>
<td>4</td>
<td>A</td>
<td>4.00</td>
<td>16.00</td>
</tr>
<tr>
<td>PHYS 121</td>
<td>4</td>
<td>B</td>
<td>3.00</td>
<td>12.0</td>
</tr>
<tr>
<td>ENGR 111</td>
<td>4</td>
<td>A</td>
<td>4.00</td>
<td>16.0</td>
</tr>
<tr>
<td>Semester Total</td>
<td>16</td>
<td></td>
<td></td>
<td>56</td>
</tr>
</tbody>
</table>

SGPA = 56 / 16 = 3.50

SPRING SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hour</th>
<th>Grade</th>
<th>Grade Value</th>
<th>Quality Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 112</td>
<td>4</td>
<td>B</td>
<td>3.00</td>
<td>12.00</td>
</tr>
<tr>
<td>MATH 112</td>
<td>4</td>
<td>B</td>
<td>3.00</td>
<td>12.00</td>
</tr>
<tr>
<td>PHYS 122</td>
<td>4</td>
<td>A</td>
<td>4.00</td>
<td>16.0</td>
</tr>
<tr>
<td>ENGR 112</td>
<td>4</td>
<td>C</td>
<td>2.00</td>
<td>8.00</td>
</tr>
<tr>
<td>Semester Total</td>
<td>16</td>
<td></td>
<td></td>
<td>48</td>
</tr>
</tbody>
</table>

SGPA = 48 / 16 = 3.00

Cumulative Total

<table>
<thead>
<tr>
<th>Credit Hour</th>
<th>Grade</th>
<th>Grade Value</th>
<th>Quality Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td></td>
<td></td>
<td>104</td>
</tr>
</tbody>
</table>

CGPA = 104 / 32 = 3.25

At the end of each semester, student grade point averages are used in determining academic actions (probation, dismissal) and scholarship decisions (partial tuition payments). Although a student’s grade point average may subsequently change due to repeated courses, the academic action or scholarship decision taken at the end of each semester remains unchanged.

5.20 INCOMPLETE GRADES

The incomplete grade (I) is an optional grade that can only be assigned when a student has satisfactorily completed a major portion of the work in a course but, for non-academic reasons beyond the student’s control and deemed to be acceptable in accordance with the University regulations, was unable to meet the full requirements of the course. An incomplete grade (I) assigned in a course must be removed and the grade change submitted by the end of the second full week of classes in the next regular semester. Failing to remove the grade of I in the allotted time will result in the grade of I being changed to the grade of F.

It is the student’s responsibility to meet with the faculty member and request arrangements for the completion of the required course work.
5.21 REPETITION OF COURSES

A student may repeat a course for which he/she received a letter grade of C- or lower. The repetition is subject to the following guidelines:

- Repetition of a course more than once requires the approval of the College Dean Degree credit for a course is given only once, but the grade assigned each time the course is taken is permanently recorded on the transcript.
- Only the highest grade earned for a repeated course will be used in calculating the GPA.
- A student is not allowed to repeat more than 10 degree courses throughout his/her undergraduate studies at the University.
- For prerequisite purposes, the highest grade will be used.

5.22 ADVANCED STANDING CREDIT

Khalifa University may award advanced standing credit for certain academic work completed prior to enrollment at the University. This includes sufficiently high scores on some national/international secondary school examinations such as the College Board Advanced Placement (AP), International Baccalaureate (IB-Higher Level), and Advanced A-Level GCE (General Certificate of Education). Information on score requirements and equivalent course credit is available from the Admission Office or the Registration Office.

Advanced Standing Credit may only be granted after the student has been fully admitted as a freshman to Khalifa University. All students who would like to be considered for advanced standing credit must complete the Advanced Standing Credit Evaluation form at the Admissions Office and provide either the original score certificate or an official copy from the appropriate examining agency. Each student will be evaluated on a case-by-case basis. All students must submit their request for advanced standing credit evaluations within the first semester of their freshman year at Khalifa University. Credits earned through “Advanced Standing” are considered “transfer credits” (non-resident credits) for degree requirement purposes.

5.23 CREDIT BY EXAMINATION

A qualified student enrolled at Khalifa University may pass a specially prepared challenge examination and receive credit for a University course without having undertaken the normal course work. Interested students should contact the Chair of the Department in which credit is sought to request administration of an examination. Since it may not be appropriate to award credit based on Advanced Standing for some courses, the decision to offer an examination rests with the Department. If the Chair of the Department authorizes an examination, the student is instructed to complete the Credit by Examination form at the Registration Office. Hours earned through Credit by Examination will be indicated on the transcript, but no grade points will be awarded. Hours attempted will be assigned equal to the hours earned. Failure on such an examination will incur no grade point penalty or hours attempted. Credits earned through “credit by examination” are considered in residence credits for degree requirement purposes.

Credit by Examination is subject to the following conditions:

- Credit by Examination testing will normally be offered during the final examinations period.
- Students may attempt Credit by Examination in a given course only once.
- No more than 12 credit hours of Credit by Examination may be included in a major program.
- No more than 6 credit hours of Credit by Examination may be included in a minor program.
- Credit by Examination test scores will be reported with a P or U grade. Neither grade will be included in the calculation of the student’s GPA.
- Students requesting Credit by Examination must satisfy all pre-requisites of the course for which they are being examined.
5.24 FINAL GRADE CHANGES AND APPEALS

Final course grades, officially reported by the instructor at the end of an academic semester, are recorded by the Registration Office. Official recorded grades can only be changed with the approval of the Department Chair and the Dean. A request to change a grade may be initiated, in writing, by the student or the student’s instructor. The student can initiate a grade appeal no later than two weeks from the official release of the grades as specified by the Registration Office.

5.25 LATENESS AND ATTENDANCE GUIDELINES

Khalifa University is committed to providing high quality education to its students. Attendance at classes is essential to their obtaining that education, and for taking advantage of the resources that the University provides for the intellectual growth and development of its students. For these reasons, students at Khalifa University are required to punctually attend all scheduled lectures, labs, recitation or tutorial sessions, etc., in each course for which they are registered, and are responsible for completing the work from all class sessions. Absences from class may be excused for such reasons as personal illness, family emergency, religious holidays, or participating as an authorized University representative in an approved event.

Khalifa University guidelines on lateness and attendance are outlined below. The complete policy may be found in the student handbook.

- Attendance is mandatory for every session of every course in which a student is registered.
- Instructors are not obliged to give substitute assignments or examinations to students who miss classes.
- If a student misses 20% of the scheduled sessions in a course for any reason (excused or unexcused), the University may initiate withdrawal of the student from the course. If approved by the Dean of the student’s college, the withdrawal is implemented. A grade of W will be entered on the student’s record if the withdrawal is initiated before the end of the tenth week of class. If the withdrawal is initiated after the tenth week of classes, a grade of WF will be entered on the student’s record and will be calculated in the GPA. Instructors are to keep attendance records and to draw students’ attention to attendance requirements noted in each course syllabus.

5.26 LANGUAGE OF INSTRUCTION AND EXAMINATION

English is the official language of Khalifa University. All courses at Khalifa University are taught and examined in English with the exception of non-English content courses such as Arabic language.

5.27 LEAVE OF ABSENCE AND REINSTATEMENT

A leave of absence can interrupt a student’s studies and delay the completion of degree requirements. Such leaves shall only be granted for good cause.

- Generally, a student must be in good academic standing. A student in good academic standing is allowed no more than two consecutive semesters leave of absence. The student must complete a Leave of Absence form at the Registration Office. The leave of absence must be approved by the Registrar who may grant exceptions in those cases when the student is not in good academic standing or conduct standing.
- A student may apply for a leave of absence once throughout the duration of his/her undergraduate study at the University.
- To resume studies after a leave of absence a student must complete a Reactivation form at the Registration Office.
Evaluation

A university degree certifies that its holder has attained a measurable level of achievement as established by a recognized system of evaluation. Thus, the performance of each student in each course must be evaluated by the instructor or instructors responsible for the course.

Final grades are determined by students’ performance in one or more of the following:

- Assigned work, term papers, projects, etc.;
- Class participation;
- Progress tests;
- Laboratory tests and/or laboratory work;
- Mid-term and/or final examinations;
- Level of written expression

The weight accorded to the various elements is at the discretion of the academic department responsible for the course. At the beginning of a course, the instructor will provide students with the detailed syllabus in writing. The scheme cannot be altered without appropriate notice in writing. To assist students in preparing for their final exams, no tests or significant assessments should be administered during the final week of classes.

Normally, an instructor will submit final grades no later than three days after the scheduled final examination in a course or, where there is no final examination, seven days after the last scheduled class in a course.

Examinations

The University academic calendar lists the first day of each official examination period. University policies and regulations governing the administration of examinations are available from the Registration Office.

A final examination or other form of final assessment shall be given in every course. Exceptions may be made only in accordance with the approved course syllabus.

All final examinations shall be held on the date and at the time listed in the official final examination schedule issued by the Registration Office. Approved alternative assessments shall be due on the date and time listed in the final examination schedule for the course involved.

In extraordinary situations, a student may apply for an excused absence from a semester or final examination if the absence is due to serious illness or other compelling circumstances beyond the student’s control. These criteria shall be strictly applied. Students requesting an excused absence must apply in writing to the Registration Office and provide documentary support for their assertion that the absence resulted from one of these causes. Any request for an excused absence from an examination should be made within 72 hours of the exam date.

Students who are excused from a final examination will be required to sit for a make-up examination administered at a time and place set by the Registration Office. The make-up exam shall cover only the material for which the student was originally responsible and be at a comparable level of difficulty with the original examination. A make-up exam shall be scheduled as quickly as possible but shall not interfere with the student’s other classes or examinations.

Students who are officially excused from a semester examination shall not be re-examined. Instead, their final examination mark(s) will be attributed to the mid-term exam.

Records and Transcripts

A permanent academic record for each student enrolled in the University is maintained in the Registration Office. The written consent of the student is officially required to disclose his/her academic record. Exceptions are made for parents, sponsors, and authorized Khalifa University officials and in compliance with a judicial order.
Khalifa University encourages excellence in scholarship and gives official recognition to undergraduate students whose work is superior in any given semester.

President's List:
The President’s List includes all degree-seeking undergraduates who, during the preceding semester, earned a semester grade point average of 3.80 or higher, completed a minimum of 12 credits and are not on academic probation or subject to any disciplinary action. (All grades must be reported.) An eligible student must have no incomplete grades, repeated grades replacing lower grades earned in prior terms, nor any grade below C. The President’s List acknowledgement will be posted on the student’s transcript.

Dean’s List:
The Dean’s List includes all degree-seeking undergraduates who, during the preceding semester, earned a semester grade point average of 3.50 – 3.79, completed a minimum of 12 credits and are not on academic probation or subject to any disciplinary action. (All grades must be reported.) An eligible student must have no incomplete grades, repeated grades replacing lower grades earned in prior terms, nor any grade below C. The Dean's List acknowledgement will be posted on the student’s transcript.

Graduation Honors:
An undergraduate student graduating from Khalifa University will be awarded graduation honors based on the student’s final cumulative grade point average as follows:
- 4.00-3.80 Excellent With Highest Honor;
- 3.79-3.65 Excellent with High Honor;
- 3.64-3.50 Excellent with Honor.

Fully admitted degree students are placed on probation if their overall or cumulative GPA (CGPA) falls below 2.00. This is noted on the student’s academic record and grade report. While on probation, a student may not take any course on a Pass/Fail basis. Probation ends at the close of a regular semester if a student has attained a CGPA of 2.00 or above. Unless otherwise approved by the Dean, a full-time student on probation is only allowed to register for a maximum of 13 credit hours per semester. A student who is placed on academic probation must enroll for a special one-credit course (SDAS100) dealing with academic goal setting, study skills and time management.

Conditionally admitted students, who are enrolled in the Preparatory Program, are not subject to academic probation. Conditionally admitted students must successfully complete the Preparatory Program or their conditional admission will be rescinded and they will be separated from the University.

An undergraduate student who fails to remove his/her probation status by the end of the second regular semester on probation is academically dismissed from the University.

A student’s transcript will indicate if they are subject to dismissal. A student in jeopardy of dismissal should make an appointment with their academic advisor and the Dean of the appropriate College at the earliest opportunity.

A student who is subject to academic dismissal may be continued on probation for an additional semester upon application by the student and a determination by the University that the student is making substantial and timely improvement in raising his cumulative grade point average to 2.0.
At the discretion of the University, an academic dismissal action may be delayed pending a final appeal to the Provost.

5.33 STUDENT RIGHTS AND RESPONSIBILITIES

Student Academic Rights

University life is about learning, growing, and discovering. This section describes your academic rights. These rights include:

1. Your instructor’s obligations to you to inform you as to what you will learn and how you will be assessed on your accomplishments.
2. The right to a fair and impartial assessment of your performance as a student.
3. The obligation of the University to uphold and preserve its students’ rights to exercise principles of academic freedom. This obligation reflects the University’s mission, which is dedicated to the advancement of learning through teaching and research and to the discovery and application of knowledge. The principles of academic freedom protect the freedom of inquiry and research and freedom of expression and publication within the bounds of professional, ethical, cultural, contractual and legal behavior. In order to preserve the rights and freedoms of its students, the University has a formal process for adjudication of academic related student grievances.
4. The right of every student to a quality education.
5. Provision by the University of sufficient course information to permit students to make informed course selections.
6. Availability in each course of a course outline including (but not limited to):
 - A description of the topics to be considered in the course;
 - Objectives and outcomes; and
 - A list of all required readings and other materials, a description of the means of evaluation to be used in the course, the instructor’s office hours, and locations for office appointments.
7. Fair and reasonable evaluation of a student’s performance in a course, with evaluation measure reflecting the content of the course. The method of evaluation shall be made known to the student as soon as practicable.
8. Subject to reasonable administrative arrangements, and provided the request is made by a student within a reasonable time after the notification of a grade:
 - The right to consult any written submission for which he or she has received a grade and a right to discuss this submission with the faculty member.
 - The right to impartial and competent review of any grade.
9. Provision by the University of Information and transparent delivery mechanisms for students in need of financial aid.

Student Responsibilities

An educated person realizes that rights are not to be taken for granted. Rights require responsibility. The University policy on Student Responsibilities to the University, the Faculty and fellow students include:

Honor Code of Conduct: Modeled after the “Fundamental Standard” established at Stanford University in 1896, Khalifa University espouses a simple statement of student conduct which is expected of all students in the University community.

This statement is as follows:

“Whether engaging in university activities or engaging in their lives outside the university, students at Khalifa University are expected to show respect for order, morality, personal honor and the rights of others as is demanded of good citizens. This includes conforming to applicable laws and respect at all times for the cultural norms and expectations of the society we live in. Failure to do this will be sufficient cause for removal from the University.”

Students will be asked to commit to this standard upon matriculation. It is emphasized that this commitment implies adherence to both academic and non-academic regulations in this catalog, and also governs the standard of behavior they live by in other facets of their lives as well.

- Every student is responsible for the proper completion of his/her academic program. This includes knowledge of the University Catalog, maintaining the grades required, and meeting all other degree requirements.
- Every student is responsible for maintaining communication with the University and keeping
The academic community, like all communities, functions best when all its members treat one another with honesty, fairness, respect, and trust. Khalifa University expects high standards of scholarship and integrity from all members of its community. To accomplish its mission of providing an optimal educational environment and developing leaders of society, the University promotes the assumption of personal responsibility and integrity and prohibits all forms of academic dishonesty. The purpose of education is to develop a student’s ability to think logically and to express himself/herself accurately.

Members of the University community are expected to carry out their work with intellectual honesty and professional integrity, adhering to the highest standards of ethical behavior consistent with the codes of conduct set down by relevant professional societies. Unethical behavior is not worthy of members of the University community and will be dealt with severely.

Academic dishonesty in any form undermines the very foundations of higher education and will not be tolerated by the University. The most common form of academic dishonesty is plagiarism. Other forms of academic dishonesty are described in the sections below.

Academic Integrity Code

The academic community, like all communities, functions best when all its members treat one another with honesty, fairness, respect, and trust. Khalifa University expects high standards of scholarship and integrity from all members of its community. To accomplish its mission of providing an optimal educational environment and developing leaders of society, the University promotes the assumption of personal responsibility and integrity and prohibits all forms of academic dishonesty. The purpose of education is to develop a student’s ability to think logically and to express himself/herself accurately.

Members of the University community are expected to carry out their work with intellectual honesty and professional integrity, adhering to the highest standards of ethical behavior consistent with the codes of conduct set down by relevant professional societies. Unethical behavior is not worthy of members of the University community and will be dealt with severely.

Academic dishonesty in any form undermines the very foundations of higher education and will not be tolerated by the University. The most common form of academic dishonesty is plagiarism. Other forms of academic dishonesty are described in the sections below.

Plagiarism

Plagiarism is the act of stealing the ideas and/or the expression of another person and representing them as one’s own. It is a form of cheating and a kind of academic misconduct that should result in some form of academic penalty. It is important that one understands what it consists of, so that a student does not jeopardize his academic career. A student has come to the University to learn, and this means acquiring ideas and exchanging opinions with others. But no idea is ever genuinely learned by copying it down from someone else’s work.

A student commits plagiarism if he/she submits work that is not truly the product of his or her own mind and skills.

Forms of Plagiarism

1. A word-by-word copying of someone else’s work, in whole or in part, without acknowledgment, whether that work be a magazine article, a portion of a book, a newspaper piece, another student’s paper, or any other composition not your own. Any such use of another’s work must be acknowledged by:
 - Enclosing all such copied portions in quotation grades.
 - Giving the original source either in the body of the paper or in a note. As a general rule, one should make very little use of quoted matter in papers, project reports and assignments.

2. An unacknowledged paraphrasing of the structure and language of another person’s work. Changing a few words of another’s composition, omitting a few sentences, or changing their order does not constitute original composition and therefore can be given no credit. If such borrowing or paraphrasing is ever necessary, the source must be indicated by appropriate reference.

3. Writing a paper based solely on the ideas of another person. Even though the language is not the same, if the thinking is clearly not one’s own, then the person has committed plagiarism.
for example, in writing a paper a student reproduces the structure and progression of ideas in an essay one has read, or a speech one has heard, the student in this case is not engaging his/her own mind and experience enough to claim credit for writing his/her own composition.

In summary plagiarism includes, but is not limited to:

1. Using published work without referencing (the most common);
2. Copying coursework;
3. Collaborating with any other person when the work is supposed to be individual;
4. Taking another person's computer file/program;
5. Submitting another person's work as one's own;
6. The use of unacknowledged material published on the web;
7. Purchase of model assignments from whatever source;
8. Copying another student's results.

Avoiding Plagiarism

To avoid plagiarism, a student must give credit whenever he or she uses:

1. Another person's idea, opinion, or theory;
2. Any facts, statistics, graphs, drawings, any pieces of information that are not common knowledge;
3. Quotations of another person's actual spoken or written words; or
4. Paraphrase of another person's spoken or written words.

Direct quotations should be put in "inverted commas", and referenced. Paraphrased or edited versions should be acknowledged and referenced.

Identification and Analysis of Plagiarism Guidelines

It is University policy that electronically-submitted coursework produced by students be regularly submitted to suitable plagiarism-detection software for the identification and analysis of possible plagiarism. The University holds a site license for reputable plagiarism-detection software and makes available to all teaching staff relevant access to the software. It is mandatory that all teaching staff use such software for all major student assignments and final project reports.

Plagiarism is deemed to have occurred if the plagiarism score is equal to or greater than 15%, after all individual instances of scores of 2% or less are discounted. All coursework items that achieve a plagiarism score equal to or greater than 15% (after all individual instances of scores of 2% or less are discounted) will be awarded zero grades, subject to the following rider: For senior students only, where a piece of coursework or the final project report attains a plagiarism score between 15% and 17% (after all individual instances of scores of 2% or less are discounted), the report must be reviewed by the relevant instructor and a decision made jointly by the relevant instructor and the Department Chair as to the final score that will be recorded.

The only faculty member who may submit a coursework item for a particular course to a plagiarism-detection software program is the assigned instructor for that course. No other academic course member should submit any coursework item that relates to another faculty member's assigned course.

Other Forms of Academic Dishonesty

Cheating

Cheating is defined as using or attempting to use in any academic exercise, materials, information, study aids, or electronic data that the student knows or should know is unauthorized.

Collusion

Collusion includes cooperation of student(s) with faculty or staff personnel in securing confidential information/material (tests, examinations, etc.); bribery by student(s) to change examination grades and/or grade point average(s); cooperative efforts by student(s) and student assistant(s) to gain access to examinations or answers to examinations for distribution; seeking, obtaining, possessing, or giving to another person an examination or portions of an examination (not yet given), without permission of the instructor.

Fabrication of Data

This means the invention of results that have not been achieved by any scientific processes, either through logical argument or empirical investigation.
When an instructor suspects that a student has violated the University’s Academic Integrity Code, he or she shall collect whatever evidence may be available and relevant and shall immediately address the matter with the student via an interview. During the interview, the instructor has the right to ask the student to provide additional evidence (such as sources used) to establish the facts of the case.

If, after the interview, the instructor believes that the charges are unfounded or the evidence is not sound, he/she shall dismiss the case.

If, however, at the conclusion of the interview, the instructor discovers that the student did act in violation of the Academic Integrity Code, the instructor shall consult with the Chair/Dean of the student’s department/college to determine whether the student has had a previous offense. In the event the student has had a previous offense, the instructor shall forward the case directly to the Department Chair. The instructor shall accompany the case with a brief report detailing the offense committed and the interview with the student.

If the case represents a student’s first offense and the student admits guilt during the interview, the instructor may take one of the following actions:

- Counsel the student and issue him/her a formal written warning;
- Require the student to resubmit the work or undertake another form of assessment in lieu of the work in question, with a capped pass grade;
- Give a grade of zero for the work (in cases involving plagiarism, the issuance of a grade of zero is mandatory if the student’s plagiarism score is equal to or greater than 15% after all individual instances of scores of 2% or less are discounted);
- Refer the case immediately to the Department Chair, if the offense is serious and warrants a greater sanction.

The instructor shall then write a brief report detailing the offense committed, the interview with the student, and the penalty imposed. This report shall be provided to the student within five (5) business days of the interview and submitted, through the relevant Department Chair, to the Dean for inclusion in the student’s file.

If the student wants to initiate an appeal, the student must submit a written request through the Department Chair to the Dean within five (5) business days of receiving notification of the instructor’s sanction.

The offence is referred to a Hearing Committee in the following cases:

- If the case represents a student’s first offense and the student either did not admit guilt or wishes to appeal the sanction imposed by the instructor;
- If the case represents a student’s first offense and the student admitted guilt but the instructor decided that the offence is serious and warrants a greater sanction than the list of penalties that he/she has the authority to impose;
- If the student has had a previous offence.

The Hearing Committee is an ad-hoc University committee appointed by the Provost (or Designee) and is comprised of senior faculty and staff members who are independent of the student and the case. The Provost (or designee) shall designate a Chair for the hearing.
3. The committee shall meet as directed by the chair to review all statements and supporting materials and to determine whether an act of academic dishonesty occurred. The committee may also request additional information and/or interview individuals who may have information relevant to the incident, including the instructor(s) who made the referral and the student involved.

4. The hearing should be conducted in such a manner as to do substantial justice and not be restricted unduly by rules of procedure. The focus of inquiry shall be the validity or invalidity of the accusations against those accused of violating the Academic Integrity Code.

5. The meeting shall be private, in order to protect the confidentiality of the proceeding.

6. The accused student may challenge any member of the committee on grounds of prejudice. The committee shall deliberate in private and determine, by majority vote (excluding the member being challenged), whether the member should be replaced by an alternate committee member who will be designated by the Chair.

7. The student shall have the right to be assisted by an adviser of the student’s choice, who must be a full-time staff member or a full-time faculty member. Attorneys are not permitted to attend the hearing. The adviser, upon request of the student may:
 > Advise the student in the preparation of the student’s case;
 > Accompany the student to the hearing;
 > Assist the student in questioning witnesses.
 > Advise the student in the preparation of an appeal;

8. At the onset of the hearing, the Chair confirms that the referred student(s) understands his/her rights.

9. If the student fails, without reasonable excuse, to attend the hearing, the committee may proceed with the hearing in the student’s absence or, at the Chair’s discretion, postpone the start of the hearing.

10. The Instructor shall, at the outset of the hearing, and in the presence of the student, apprise the committee of the facts and allegations of the case and the names of the witnesses who are to be presented to establish said factors and allegations. The student may make a summary statement in response.

11. All witnesses shall be heard by the committee in the presence of the student. The student and the student’s advisor may put questions to the witnesses, and shall have access to any documents considered by the committee as evidence in the case.

12. The student shall be afforded an opportunity to speak on his/her own behalf and to present witnesses. Should the student decide to speak, he/she will be subject to questions from the committee. The committee may consult legal assessors for advice regarding any evidentiary or procedural issue that arises during the hearing.

13. Following the hearing, the Committee will make a determination based on the facts/circumstances of the case. Depending upon the Committee’s findings, it may take one of the following actions:
 > Dismiss the case; or
 > Impose a penalty based on “case history” and clear, convincing, and reliable evidence in support of the charge.

 This may include, but is not limited to, the following:
 I. Counseling the student and issuing him/her a formal written warning;
 II. Requiring the student to resubmit the work or to undertake another form of assessment in lieu of the work in question, with a capped pass grade;
 III. Giving a grade of zero for the work (in cases involving plagiarism, the issuance of a grade of zero is normally mandatory as detailed in the Identification and Analysis of Plagiarism Guidelines section of this Volume);
 IV. Failing the student in the relevant course;
 V. Failing the student in all courses for the semester during which the academic misconduct has occurred;
 VI. Suspending the student from the University for a given period of time. Suspension shall entail the withdrawal of such University privileges as are specified by the party or the hearing body imposing the suspension. If no particular privileges are specified, suspension shall entail the withdrawal of all University privileges, including the right to enter and be upon University property, in which case the student, during suspension, may only come upon University property for a specified purpose, previously authorized in writing by the Chair of the Committee that imposed the disciplinary action. Violation
In cases of penalties resulting in immediate suspension or expulsion, the student shall physically leave University-owned or controlled property within twenty-four (24) hours after being informed of the sanction by the committee. The student may return to University-owned or controlled property during the terms of the suspension, dismissal or expulsion for the express purpose of attending the appeal hearing (if applicable) or for completing total separation requirements. Suspended students shall also be permitted to take examination(s) or submit paper(s) during the suspension, but the University may make special arrangements as to time and place for the completion of such work.

The chair of the committee will notify the student of the committee’s decision in writing within five (5) business days. The student will also be informed in writing of the right to file a final written appeal to the Provost within five (5) business days of receipt of the Committee decision. The Committee shall write a brief report detailing the case and its decision. A copy of the report shall be submitted to the Dean / Vice Provost for Graduate Studies and Research (for graduate students) for inclusion in the student’s file.

In the event of an appeal, the decision of the committee shall be implemented immediately. In the event of an appeal, implementation of the committee decision will be suspended until a decision on the appeal is rendered by the Provost. The Provost’s decision is final.

An annual report of the disciplinary activities and actions shall be prepared by the University Registrar and presented to the Provost and the President annually. However, in any description, no mention shall be made of the names of the parties or of any information which might lead to their identification.
The Division of Student Services is dedicated to providing quality services and support for students on and off-campus. The Division advocates for student’s needs, facilitates student involvement in their learning and personal development, and supports students as they accept responsibilities associated with membership in a campus community. Operating within the framework of intentional student development, the Division is committed to promoting a caring, cooperative campus environment that values diversity and appreciates the dignity of all people.
Students at Khalifa University are encouraged to participate in curricular as well as co-curricular activities. The university wants students to be engaged in a student-centered manner with a variety of educational, recreational, cultural and social activities enabling students to develop personal and professional talents and interests. Students are provided with facilities such as meeting rooms, student lounges, activity rooms, TV rooms, and prayer rooms. In addition, Khalifa University provides on-campus services tailored to the needs of its students such as personal and career counseling and a nurse/health educator. The aim is to promote a campus climate that enhances the educational, physical, social, and emotional well-being of students, and creates a collaborative, caring, and participative academic environment.

Housing

University hostels offer an environment in which students from different parts of the country have the chance to meet and learn from one another. Student housing is available at both the Sharjah and Abu Dhabi Campuses. All housing facilities are managed by on-site staff. Based on availability and demand, student housing is subject to priority allocation. In general, housing priority is afforded to students who are UAE Nationals residing beyond 100 km commuting distance to campus. Priorities and costs are subject to change.

The Sharjah Campus provides purpose-built student housing for men, which is located on campus. The Abu Dhabi campus provides leased off-campus accommodation for both male and female students. Transportation is provided to and from the campus.

Emergency Services

Campus security and emergency services are provided by the campus security department which operates twenty-four hours daily. These services can be requested by calling or contacting the security office.

Campus Food Services

Food services are available at the Sharjah and Abu Dhabi campuses including full meals and snack items. There are a variety of food venue options at reasonable rates on the Abu Dhabi campus and a cafeteria on the Sharjah campus.

Mosque and Prayer Facilities

Khalifa University provides separate prayer rooms for men and women including separate areas for ‘Wudhu’, washing and cleansing.

Recreational Facilities

Recreational facilities including a gymnasium, swimming pool, tennis courts, and playing field, are available at the Sharjah campus. There are no recreational facilities on the Abu Dhabi campus at this time, but venues are leased on a ‘current needs’ basis.

Career and Counseling Services

Career Services engage students in educationally purposeful experiences resulting in student learning and development, academic success and degree completion. Our aim is to help students identify academic majors, develop career plans and goals, become employment ready and build relationships with employers.

Career Services offers a University Success Program which includes the following topics: developing effective study habits; discovering personal learning styles; understanding the importance of managing time; exploring personal values and interests. To prepare students for internships and employment the following services are offered:
Counseling sessions can be scheduled to help with personal problems related to being a successful student. Strict adherence of privacy is assured except where health and safety situations pose a risk to the student or others.

Peer Tutoring

The Peer Tutoring program seeks to offer academic support as requested by students in all degree disciplines and course levels. Tutoring is provided on a one-to-one basis, however tutoring to small groups can be arranged.

Peer tutoring is viewed as a means to supplement classroom instruction, foster independent learning, build self-esteem and assist students in improving their academic skills. The program will continue to evolve to provide quality tutoring for the student body of Khalifa University.

6.3 STUDENT ACTIVITIES

Purposeful and planned student activities at Khalifa University provide a friendly atmosphere to a multicultural and co-educational student body. The aim is to create a vibrant environment around co-curricular activities which extends beyond the classroom.

Khalifa University students are encouraged to organize and arrange many events and activities. These activities and programs include: a talent day; UAE National day celebrations, Student Leadership Day and intramural competitions.

The on campus facilities to support these co-curricular activities are: student lounges and activity rooms (male and female); prayer rooms; kitchens; cafés and wireless internet access.

The university encourages the establishment of a variety of student organizations and clubs reflecting student interest and individual/group accomplishment of learning outcomes determined by the University.

Some of the current Clubs at Khalifa University

Adventure Club	Jan Club (Pakistani)
Arabic Club	JUNG SIM Do (Martial arts club)
Automotive Club	Korean Club
Book Club	Math Club
Chess Club	Media Club
Culture and Heritage	Nippon Club (Japanese)
Debate Club	Photography Club
Emirati Club	Programming Club
French Club	Sport Club
Germany Club	Student Council
Green Club	The Theatre Club
Green Crescent Club	Volunteering Club
Creativity Engineering Club	

Professional Organizations

AIAA Student Section

The goal of the AIAA (American Society of Aeronautics and Astronautics) section is:

1. To promote Aerospace engineering to students.
2. To link between students and aerospace companies by making industrial trips.
3. To make students participate in AIAA competitions such as design build and fly competition.
ASME Student Section

Khalifa University ASME (American Society of Mechanical Engineering) student section mission is to help students to be professional and open-minded to new ideas. It aims to develop partnerships with industries, government agencies and other academic institutions. In addition, one of the ASME goals is to achieve international visibility by organizing and participating in technical conferences, seminars, lectures and competitions. Participating in the Student Professional Development Conference (SPDC) in the American University of Beirut, Lebanon was our biggest achievement. We got the chance to be part of the lectures and seminars held there and to win two of the competitions we participated in. Our next year objectives are to participate in Robocup Competition and Human Powered Vehicle Competition as well as the Student Design Contest and the Old Guard Oral Presentation Competition. We are also planning to Host the next SPDC in Khalifa University. Offering students online courses and workshops that develop engineering and communication skills is also in process. Finally, we are trying to provide as many social events as we can to encourage other students to join us.

IEEE Student Section

The Institute of Electrical and Electronics Engineers (IEEE) is the world’s largest professional association for the advancing of technology. The IEEE student chapter aims to prepare Khalifa University students to face challenges of the outside world and equip them with all the sufficient knowledge of their own field as well as being distinguished by their awareness of other fields’ progress and their ability to communicate with others. IEEE and its members encourage a global community through IEEE’s highly cited publications, conferences, technology standards, and professional and educational activities. The IEEE student section vision is a continuous, successful and productive student branch that holds new and innovative activities in both the scientific and social environments. Our mission is to be the definite article that merges all disciplines and activities into one big integrated multidisciplinary team of innovation and productivity.

Goals are an important part of any emerging new chapter, and therefore, here are some of the goals of Khalifa University’s Abu Dhabi IEEE student chapter section:

> Explain the importance of networking and resources through technical societies.
> Invite several qualified speakers to the campus form various backgrounds to share their experience and knowledge.
> Coordinate with the other chapters of ASME and AIAA in Khalifa University Abu Dhabi Campus to conduct workshops, activities and conferences.

Registration in the chapter is open for all majors of engineering.

Student Council

The purpose of the Student Council Khalifa University is to provide the student body with a common platform that aims at promoting interaction among students and the university body. The Student Council works closely with the Division of Student Services to foster a spirit of community, understanding, and harmony throughout the campus. The Council also aims to provide students with unique opportunities to develop life skills and leadership qualities by organizing activities and hosting events of interest to the students.

Student Council Objectives:

> To provide a link between the student body and University Management.
> To encourage participation in extracurricular activities.
> To coordinate university events involving the campus community, such as National Day, Leadership Day, International Day etc.
> To create a collaborative, caring, and participative work environment.
> To enhance the educational, physical, social and emotional well-being of students.
> To provide students with a platform to voice their views and facilitate action from the campus administration on any issues, needs and concerns.
> To organize clubs, field trips, workshops and competitions.
> To provide opportunities for students to develop life skills.
> To develop leadership skills.
6.4 STUDENT RIGHTS

The University is a community. A community has many different groups and individuals. The community which enhances understanding and appreciation of others is rich in diversity. As a student, you have rights which assist you in taking your place as a member of the community.

These are as follows:

1. Every student enjoys within the University all rights and freedoms recognized by the Laws of the United Arab Emirates.
2. Every student has a right to equal treatment by the University. A student has a right to be free from discrimination based on race, color, origin, religion, sex, or personal handicap.
 > A distinction, exclusion, or preference based on relevant academic or physical aptitudes required and made in good faith is considered to be non-discriminatory.
3. Every student has a right to the safeguard of his or her dignity. This right includes protection by the University against vindictive conduct displayed by a representative of the University acting in an official capacity.
4. Every student has a right to be free from reprisal or threat of reprisal made by a person in a position to offer or deny to the student an academic advantage or opportunity relating to the status of a student.
5. The University has an obligation to ensure that administrative decisions are made, or actions taken, with fair regard for the known and legitimate interests of students.
6. The University has an obligation to maintain safe and suitable conditions of learning and study.
7. The University has an obligation to ensure that adequate measures are taken to protect the security of students on University property.

6.5 NON-ACADEMIC STUDENT CONDUCT REGULATIONS

The Division of Student Services is responsible for reviewing all alleged violations of non-academic student conduct. Non-academic offenses are related to behaviors that disrupt the life of the University community.

Non-academic offenses include, but are not limited to, the following categories.

> Disruption of teaching or other University activities including administrative processes.
> Unauthorized entry and/or presence on University property.
> Threat, damage and destruction of University property or the property of other members of the University community.
> Physical abuse, harassment, and dangerous activities.
> Possession of stolen property.
> Unauthorized or fraudulent use of University facilities, equipment or services.
> Misuse of library and information technology resources.
> Any behavior or appearance deemed by UAE or Khalifa University norms to be offensive to the culture.

Behaviors deemed to be unacceptable may lead to a variety of sanctions up to and including student dismissal from the University. The Khalifa University Student Handbook and website details University policies and procedures regarding student conduct regulations, hearing procedures and sanctions.
Preparatory Program
The objective of the Preparatory Program at Khalifa University is to provide a bridge for students to successfully make the transition from high school to undergraduate studies. To achieve this, the program introduces them to the rigor and discipline of academic study in a caring and supportive environment where personal development, independent study, and critical thinking are nurtured.

The aims of the Preparatory Program are to ensure that students have a sound foundation in Chemistry, Math, Physics, and IT and that their English language proficiency is sufficient to allow them to pursue undergraduate and graduate studies in an English-medium university. In addition, students are taught the academic study skills necessary for success in tertiary education and are exposed to the behavioral competencies required to become not only successful students but also effective members of society.

Depending on the level of entry, students typically spend between one to two semesters in the program. All students who gain entry to the Preparatory Program are given every opportunity to succeed and meet the criteria for full admission to undergraduate studies in Khalifa University.
With this in mind, students are initially given placement tests in Math and English to place them in their appropriate proficiency level. Regular assessments are conducted to identify student progress and offer remedial support where necessary. Assessments take the form of traditional-style examinations, assignments, quizzes, and projects.

To further support students in the Preparatory Program, class sizes are kept small wherever possible, students are encouraged to become actively involved in the learning process, and both instructors and advisors are readily available to assist students outside of class hours.

Acceptance to the undergraduate program is based on successful completion of the Preparatory Program. This is evidenced by a student’s overall academic record, successful completion of all Preparatory courses with a grade of C or higher, and achievement of a Band 6 in the external IELTS (or equivalent).

Curriculum

Students are enrolled in appropriate English, Math, Chemistry, Computer Studies and Physics courses based on their results on the Khalifa University Placement Test.

English Language Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 001</td>
<td>Preparatory English I</td>
<td>8 hours</td>
</tr>
<tr>
<td>ENGL 002</td>
<td>Preparatory English II</td>
<td>5 hours</td>
</tr>
<tr>
<td>ENGL 003</td>
<td>IELTS Exam Skills</td>
<td>3 hours</td>
</tr>
</tbody>
</table>

Computing Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPE 002</td>
<td>Introduction to Information Technology</td>
</tr>
</tbody>
</table>

Mathematics and Sciences Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 001</td>
<td>Preparatory Mathematics I</td>
<td>5 hours</td>
</tr>
<tr>
<td>MATH 002</td>
<td>Preparatory Mathematics II</td>
<td>5 hours</td>
</tr>
<tr>
<td>PHYS 001</td>
<td>Preparatory Physics I</td>
<td>2 hours</td>
</tr>
<tr>
<td>PHYS 002</td>
<td>Preparatory Physics II</td>
<td>3 hours</td>
</tr>
<tr>
<td>CHEM 002</td>
<td>Preparatory Chemistry</td>
<td>2 hours</td>
</tr>
</tbody>
</table>

Course Descriptions

- **CMPE 002 Introduction to Computer Technology (1-2-2)**

 Prerequisite: None

 This course introduces students to the basics of computer architecture such as input, output, storage, and system unit and communications devices. It provides an overview of system software (operating system and utility programs), application software (Business, Multimedia, Communications and Educational/Personal categories), problem solving, program designing, developing algorithms, structure theorem, pseudo code and flowcharts.

- **ENGL 001 Preparatory English I (16-0-8)**

 Prerequisite: Placement Test

 This course is designed to develop the student’s academic and general English communication skills. The student will improve his or her ability to read, write, speak and listen in English. To meet the demands of undergraduate study, the course also focuses on vocabulary building and grammatical accuracy, academic study skills and basic information literacy.
ENGL 002 Preparatory English II (10-0-5)
Prerequisite: Grade of C or above in ENGL 001 or an adequate score on English Placement Test
This course is designed to further develop the student's academic and general English communication skills. The student will develop skills for writing in a variety of genres, reading extended academic texts on a wide range of subjects, building general and academic vocabulary, listening to extended academic lectures and social dialogues, and extending, speculating and hypothesizing in spoken communication. The student will also further develop academic study skills and information literacy.

ENGL 003 IELTS Exam Skills (6-0-3)
Prerequisite: None
Co-requisite: ENGL 002
Topics: Strengthening academic skills in listening, speaking, reading, and writing. This course meets 6 hours/week for a complete semester.

MATH 001 Preparatory Mathematics I (3-2-5)
Prerequisite: None
This course introduces the basic concepts of set theory and arithmetic, fractions and mixed numbers, equations, inequalities and problem solving, lines, graphing linear equations, and inequalities in two variables, functions, exponents and polynomials, factoring and quadratic equations, rational expressions and related equations, geometric figures.

MATH 002 Preparatory Mathematics II (3-2-5)
Prerequisite: MATH 001 with a grade of C or above or a qualifying score on math Placement test
This course introduces the students to systems of linear equations, solving other types of equations, functions and their graphs, polynomial and rational functions, exponential and logarithmic functions, trigonometric functions: unit circle and right triangle approaches, analytic trigonometry.

PHYS 001 Preparatory Physics I (2-0-2)
Prerequisite: None
The course is a conceptual, highly interactive coverage of physics: the science of physics, motion in 1D, Force/laws of motion, work, energy, momentum, circular motion, Gravitation, electric forces/fields, electric energy, current, circuit, & circuit elements. The course is designed to help students build up self-study skills, understand fundamental physics concepts & improve math skills & scientific terminology.

PHYS 002 Preparatory Physics II (2-2-3)
Prerequisite: MATH 001 and PHYS 001 with a grade of C or above or a qualifying score on the math placement test
This course introduces the students to SI units, dimensional analysis of equations, uncertainty in measurement and significant figures, graphs, vector analysis, forces and Newton's laws of motion. The course also deepens the students' understanding to various physics concepts such as work, energy (kinetic, gravitational potential and elastic potential), momentum and collisions, in addition to basic concepts of electricity, and electric fields.

CHEM 002 Preparatory Chemistry (1-2-2)
Prerequisite: None
This course is an introduction to basic chemistry, measurements and calculations, matter, chemical foundations, basic chemical reactions, chemical composition, chemical quantities and chemical bonding. Laboratory experiments provide hands-on experience in visualizing, analyzing and understanding physical and chemical properties, as well as chemical reactions and equations.
College of Engineering
One of the main architectural pillars of the Emirate of Abu Dhabi’s social, political and economic future is a sustainable knowledge-based economy that is also a central theme within the Emirate’s 2030 vision. Towards this vision, the discovery of new knowledge, its dissemination and exploitation is the overarching purpose of the College of Engineering at Khalifa University. The College is distinguishing itself as a major contributor towards economic diversification within Abu Dhabi and the region, particularly through its close alignment with growing regional industries in key themes such as Energy, Aerospace, Healthcare, Transportation and Telecommunications.

The College of Engineering is a vibrant community of academic scholars, students and staff who are dedicated to engineering education and innovation for the ultimate benefit of society. To serve this admirable purpose, the College empowers students with a great sense of purposeful academic curiosity of the physical world and appreciation of the social and environmental context within a rapidly changing world.
COLLEGE VISION

To be a world class centre of excellence in engineering education, research, and knowledge transfer and hence be a catalyst for economic development in the Emirate of Abu Dhabi and the UAE.

COLLEGE MISSION

The College of Engineering serves the Emirate of Abu Dhabi, the nation, and the world by providing students with holistic education underpinned by the principle of engineering with a purpose, thus empowering them to be outstanding leaders in discovering new knowledge as a catalyst for business innovation, particularly towards Abu Dhabi’s 2030 vision. The College also plays an integral role towards this vision by conducting cutting edge fundamental, multidisciplinary and translational research in key strategic areas such as Information and Communication Technology, Aerospace, Transport and Logistics, Healthcare and Energy and the Environment.

College Undergraduate Degree Programs

The undergraduate degree programs offered by the College of Engineering are:

> Bachelor of Science (B.Sc.) in Aerospace Engineering (only Abu Dhabi campus)
> Bachelor of Science (B.Sc.) in Applied Mathematics and Statistics (only Abu Dhabi campus)
> Bachelor of Science (B.Sc.) in Applied Mathematics and Statistics – Financial Mathematics (only Abu Dhabi campus)
> Bachelor of Science (B.Sc.) in Applied Mathematics and Statistics – Mathematical Biology (only Abu Dhabi campus)
> Bachelor of Science (B.Sc.) in Biomedical Engineering (only Abu Dhabi campus)
> Bachelor of Science (B.Sc.) in Civil Engineering (only Abu Dhabi campus)
> Bachelor of Science (B.Sc.) in Communication Engineering
> Bachelor of Science (B.Sc.) in Computer Engineering
> Bachelor of Science (B.Sc.) in Computer Engineering – Software Systems
> Bachelor of Science (B.Sc.) in Electrical and Electronic Engineering
> Bachelor of Science (B.Sc.) in Electrical and Electronic Engineering – Power Systems
> Bachelor of Science (B.Sc.) in Industrial and Systems Engineering (only Abu Dhabi campus)
> Bachelor of Science (B.Sc.) in Mechanical Engineering (only Abu Dhabi campus)

The normal length of all undergraduate engineering programs is 140 credits. These credits are divided into 76 credits of University General Education Requirements (GER, 50 credits) and College of Engineering Requirements (CER, 26 credits) and 64 credits of specific Major requirements as illustrated below.

GER and CER (76 credits)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Communication</td>
<td>8</td>
</tr>
<tr>
<td>Math/ Science</td>
<td>32</td>
</tr>
<tr>
<td>General Engineering</td>
<td>12</td>
</tr>
<tr>
<td>Business Studies</td>
<td>6</td>
</tr>
<tr>
<td>Humanities/ Social Sc.</td>
<td>12</td>
</tr>
<tr>
<td>Free Elective</td>
<td>6</td>
</tr>
</tbody>
</table>

Major (64 credits)

<table>
<thead>
<tr>
<th>Component</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Core</td>
<td></td>
</tr>
<tr>
<td>Technical Electives</td>
<td></td>
</tr>
<tr>
<td>Internship</td>
<td>1</td>
</tr>
<tr>
<td>Senior Design Project</td>
<td></td>
</tr>
</tbody>
</table>
University General Education Requirements

1. English Communication (8 credits):
 - ENGL 111: English Communication I (4 cr.)
 - ENGL 112: English Communication II (4 cr.)

2. Math/Science (24 credits):
 - CHEM 115: Introduction to General Chemistry for Engineers (4 cr.)
 - PHYS 121: University Physics I (4 cr.)
 - PHYS 122: University Physics II (4 cr.)
 - MATH 111: Calculus I (4 cr.)
 - MATH 112: Calculus II (4 cr.)
 - MATH 211: Linear Algebra and Differential Equations (4 cr.)

3. Business Studies (6 credits):
 - BUSS 201: Fundamentals of Accounting and Finance (3 cr.)
 - BUSS 301: Inside Organizations (3 cr.)

4. Humanities and Social Sciences (12 credits):
 Four 3-credit courses in the Humanities and Social Sciences are required for all students. Students must take at least one course but no more than two courses in the area of Islamic Studies and Culture. The current list of courses in this area includes: HUMA 102 (Islamic Culture), HUMA 111 (Islamic History), HUMA 112 (Sciences in Islam), HUMA 210 (Introduction to Islamic Law), and HUMA 211 (Islam and Modernity).

The Office of the Registration keeps an updated list of the approved courses in this category.

College of Engineering Requirements (26 credits)

1. Additional Math/Science (8 credits):
 In addition to the 24 credits of Math/Science GERs, 8 credits of major-dependent Math/Science courses are required by the College of Engineering.

2. General Engineering (12 credits):
 - ENGR 111: Engineering Design (4 cr.)
 - ENGR112: Introduction to Computing (4 cr.)
 - ENGR 311: Innovation and Entrepreneurship in Engineering (4 cr.)

3. Free Electives (6 credits):
 All students must complete at least 6 credits of free electives which are intended to provide students with flexibility to develop depth or breadth to support their career paths and individual interests. They will support the development of technical expertise within the student’s disciplines, undergraduate research and independent study opportunities, or a minor outside engineering. They can also be used for additional Humanities and Social Science courses or any other course offered by Khalifa University.

Programs with concentration may replace free electives with other chosen electives.

DEPARTMENT OF AEROSPACE ENGINEERING

Introduction

The continued global expansion of the aviation and aerospace industries is driving a strong demand for aerospace engineers. In the UAE, as well as the Middle East, the aerospace industry has continued to expand at a rate significantly above the global average. The geographic and economic positions of the UAE are two of the drivers spurring the growth of aircraft manufacturing, maintenance repair-overhaul (MRO) facilities, and space-related industries.

Bachelor of Science (B.Sc.) in Aerospace Engineering

This program lays the foundation for the core aerospace engineering discipline while engaging students to study and understand how engineering fits within the overall global aerospace profession and industry. Principles of science and engineering are applied to design and analysis of flight vehicles and related systems in well-designed course sequences to ensure that students gain hands on experience in developing flight vehicles from concept to design, including the fabrication and testing process. Using advanced computer modeling and simulations, as well as hands-on laboratories and real life projects, students will have the tools to contribute immediately to the aerospace industry.
Program Objectives

- Graduates will meet the expectations of employers of Aerospace engineers.
- Qualified graduates will pursue advanced study if they so desire.

Student Outcomes

Students graduating with a B.Sc. in Aerospace Engineering degree will have the following abilities:

(a)	An ability to apply knowledge of mathematics, science, and engineering.
(b)	An ability to design and conduct experiments, as well as to analyze and interpret data.
(c)	An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
(d)	An ability to function on multi-disciplinary teams.
(e)	An ability to identify, formulate, and solve engineering problems.
(f)	An understanding of professional and ethical responsibility.
(g)	An ability to communicate effectively.
(h)	A recognition of the need for broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
(i)	A recognition of the need for, and an ability to engage in life-long learning.
(j)	A knowledge of contemporary issues.
(k)	An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Program Structure and Requirements

To be recommended for the degree of B.Sc. in Aerospace Engineering, students must satisfactorily complete the courses in the specified categories. The categories cover an extended set of the General Education requirements, College of Engineering requirements, Aerospace Engineering core and Technical Electives requirements. The length of the program is 140 credits.

Aerospace Engineering Math/Sciences Requirement (8 credits)

To satisfy the College of Engineering requirements, Aerospace Engineering requires the following two Math courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 212</td>
<td>Calculus III</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MATH 313</td>
<td>Applied Engineering Mathematics</td>
<td>4 cr.</td>
</tr>
</tbody>
</table>

Aerospace Engineering Core Requirements (58 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 200</td>
<td>Statics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ELCE 200</td>
<td>Fundamentals of Electronic Systems</td>
<td>4 cr.</td>
</tr>
<tr>
<td>AERO 201</td>
<td>Engineering Dynamics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>AERO 215</td>
<td>Introduction to Aerospace Engineering</td>
<td>3 cr.</td>
</tr>
<tr>
<td>AERO 220</td>
<td>Aerospace Materials</td>
<td>3 cr.</td>
</tr>
<tr>
<td>AERO 225</td>
<td>Mechanics of Solids I</td>
<td>4 cr.</td>
</tr>
</tbody>
</table>
Aerospace Engineering Electives (6 credits)

To satisfy the Aerospace Engineering Technical Elective requirement, students must select 6 credits from the list of courses below. At most 3 credits of the technical electives may be at 300-level and at most 3 credits may be independent study. In addition, courses from the list below may be taken to satisfy the free elective requirement.

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO 240</td>
<td>Thermodynamics</td>
<td>4 cr.</td>
</tr>
<tr>
<td>AERO 321</td>
<td>Aerospace Structures</td>
<td>3 cr.</td>
</tr>
<tr>
<td>AERO 335</td>
<td>Aerodynamics I</td>
<td>4 cr.</td>
</tr>
<tr>
<td>AERO 336</td>
<td>Aerodynamics II</td>
<td>3 cr.</td>
</tr>
<tr>
<td>AERO 350</td>
<td>Dynamic Systems and Control</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ENGR 399</td>
<td>Engineering Internship</td>
<td>1 cr.</td>
</tr>
<tr>
<td>AERO 415</td>
<td>Aerospace Materials Manufacturing</td>
<td>3 cr.</td>
</tr>
<tr>
<td>AERO 440</td>
<td>Aerospace Propulsion</td>
<td>3 cr.</td>
</tr>
<tr>
<td>AERO 450</td>
<td>Flight Dynamics and Stability</td>
<td>3 cr.</td>
</tr>
<tr>
<td>AERO 465</td>
<td>Space Mechanics and Control</td>
<td>3 cr.</td>
</tr>
<tr>
<td>AERO 470</td>
<td>Aircraft Design Laboratory</td>
<td>3 cr.</td>
</tr>
<tr>
<td>AERO 497</td>
<td>Senior Design Project I</td>
<td>2 cr.</td>
</tr>
<tr>
<td>AERO 498</td>
<td>Senior Design Project II</td>
<td>2 cr.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO 425</td>
<td>Design of Aerospace Structures</td>
<td>3 cr.</td>
</tr>
<tr>
<td>AERO 426</td>
<td>Designing with Composites</td>
<td>3 cr.</td>
</tr>
<tr>
<td>AERO 430</td>
<td>Intermediate Aerodynamics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>AERO 431</td>
<td>Viscous Flows</td>
<td>3 cr.</td>
</tr>
<tr>
<td>AERO 433</td>
<td>Introduction to Computational Fluid Dynamics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>AERO 435</td>
<td>Rotorcraft Aerodynamics and Performance</td>
<td>3 cr.</td>
</tr>
<tr>
<td>AERO 441</td>
<td>Introduction to Combustion</td>
<td>3 cr.</td>
</tr>
<tr>
<td>AERO 461</td>
<td>Aviation Management and Certification</td>
<td>3 cr.</td>
</tr>
<tr>
<td>AERO 485</td>
<td>Spacecraft Design</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ENGR 455</td>
<td>Finite Element Analysis</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ENGR 465</td>
<td>Methods of Engineering Analysis</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIVE 370</td>
<td>Introduction to Environmental Engineering</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MECH 443</td>
<td>Heat and Mass Transfer</td>
<td>4 cr.</td>
</tr>
<tr>
<td>AERO 391</td>
<td>Independent Study I</td>
<td>1-3 cr.</td>
</tr>
<tr>
<td>AERO 491</td>
<td>Independent Study II</td>
<td>1-3 cr.</td>
</tr>
<tr>
<td>AERO 495</td>
<td>Special Topics in Aerospace Engineering</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>
Typical sequence for a B.Sc. Degree in Aerospace Engineering

<table>
<thead>
<tr>
<th>Year 1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 111 English Communication I</td>
<td>4 cr</td>
<td>ENGL 112 English Communication II</td>
</tr>
<tr>
<td>MATH 111 Calculus I</td>
<td>4 cr</td>
<td>MATH 112 Calculus II</td>
</tr>
<tr>
<td>CHEM 115 Introduction to General Chemistry for Engineers</td>
<td>4 cr</td>
<td>PHYS 121 University Physics I</td>
</tr>
<tr>
<td>ENGR 111 Engineering Design</td>
<td>4 cr</td>
<td>ENGR 112 Introduction to Computing</td>
</tr>
<tr>
<td>Summer</td>
<td>HUMA XXX Humanities and Social Sciences</td>
<td>3 cr</td>
</tr>
<tr>
<td>Year 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUMA XXX Humanities and Social Sciences</td>
<td>3 cr</td>
<td>AERO 225 Mechanics of Solids</td>
</tr>
<tr>
<td>MATH 212 Calculus III</td>
<td>4 cr</td>
<td>MATH 211 Differential Equations and Linear Algebra</td>
</tr>
<tr>
<td>PHYS 122 University Physics II</td>
<td>4 cr</td>
<td>BUSS 201 Fundamentals of Accounting and Finance</td>
</tr>
<tr>
<td>ENGR 200 Statics</td>
<td>3 cr</td>
<td>AERO 220 Aerospace Materials</td>
</tr>
<tr>
<td>AERO 215 Introduction to Aero Engineering</td>
<td>3 cr</td>
<td>AERO 201 Engineering Dynamics</td>
</tr>
<tr>
<td>Summer</td>
<td>HUMA XXX Humanities and Social Sciences</td>
<td>3 cr</td>
</tr>
<tr>
<td>Year 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUSS 301 Inside Organizations</td>
<td>3 cr</td>
<td>ENGR 311 Innovation & Entrepreneurship in Engineering Design</td>
</tr>
<tr>
<td>AERO 240 Thermodynamics</td>
<td>4 cr</td>
<td>ELCE 200 Fundamentals of Electronic Systems</td>
</tr>
<tr>
<td>AERO 335 Aerodynamics I</td>
<td>4 cr</td>
<td>AERO 321 Aerospace Structures</td>
</tr>
<tr>
<td>AERO 305 Dynamic Systems & Controls</td>
<td>4 cr</td>
<td>AERO 336 Aerodynamics II</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3 cr</td>
<td>MATH 313 Applied Engineering Mathematics</td>
</tr>
<tr>
<td>Summer</td>
<td>ENGR 399 Internship</td>
<td>1 cr</td>
</tr>
<tr>
<td>Year 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AERO 450 Flight Dynamics and Stability</td>
<td>3 cr</td>
<td>Free Elective</td>
</tr>
<tr>
<td>AERO 415 Aerospace Materials Manufacturing</td>
<td>3 cr</td>
<td>Technical Elective</td>
</tr>
<tr>
<td>AERO 497 Senior Design Project I</td>
<td>2 cr</td>
<td>AERO 496 Senior Design Project II</td>
</tr>
<tr>
<td>AERO 440 Aerospace Propulsion</td>
<td>3 cr</td>
<td>Technical Elective</td>
</tr>
<tr>
<td>AERO 470 Aircraft Design laboratory</td>
<td>3 cr</td>
<td>AERO 465 Space Dynamics and Control</td>
</tr>
<tr>
<td>HUMA XXX Humanities and Social Sciences</td>
<td>3 cr</td>
<td></td>
</tr>
</tbody>
</table>

DEPARTMENT OF APPLIED MATHEMATICS AND SCIENCES

Introduction

The Department of Applied Mathematics & Sciences is currently an academic unit within the College of Engineering. The department offers a B.Sc. program in Applied Mathematics & Statistics with two, optional, concentrations in Financial Mathematics and Mathematical Biology. Students may choose to complete a broad program of study leading to the award of a B.Sc. degree in Applied Mathematics & Statistics, or select one of the two concentrations in order to focus their final year in the program on a particular area of application.
Bachelor of Science (B.Sc.) in Applied Mathematics & Statistics

The B.Sc. Applied Mathematics & Statistics program offers training in mathematical problem solving techniques with a reduced emphasis on abstract theory. The program is tailored to the student who will need to apply mathematical, statistical, and computational methods to practical problems.

Applied mathematics includes the theoretical portions of physics, chemistry, biomedicine, engineering, economics, finance, and a wide variety of other disciplines. Recent advances in computing technology have made the use of quantitative methods of even greater importance in these disciplines.

Prospects for employment opportunities for graduates in the mathematical and statistical sciences are excellent. There is a growing demand for professional mathematicians and statisticians in almost every sector of the job market, including the engineering and telecommunications industries; computer services and software development; actuarial and financial services; pharmaceutical industry and medical services; market research agencies; government laboratories and the military services; as well as academics and teaching.

Program Objectives

> Graduates will meet the expectations of employers of applied mathematicians and statisticians.
> Qualified graduates will pursue advanced study if they so desire.

Student Outcomes

Students graduating with an Applied Mathematics & Statistics degree will have the following abilities:

(a)	An ability to apply knowledge of mathematics, statistics and computing.
(b)	An ability to design statistical experiments, as well as to analyze and interpret data.
(c)	An ability to read, understand and construct mathematical and statistical proofs.
(d)	An ability to function on a multi-disciplinary team as a member or leader.
(e)	An ability to formulate, and to solve, mathematical models of real-world problems.
(f)	An understanding of professional and ethical responsibility.
(g)	An ability to communicate effectively.
(h)	The broad education necessary to understand the strengths and limitations of mathematical and statistical models, and their solutions, in a global and societal context.
(i)	A recognition of the need for, and an ability to engage in, life-long learning.
(j)	A knowledge of contemporary issues.
(k)	An ability to select, and use, appropriate software packages and/or computer programming to solve mathematical models.
(l)	Familiarity with, and use of, sources of current research and an understanding of how new knowledge is generated.
Program Structure and Requirements

To be recommended for the degree of B.Sc. in Applied Mathematics & Statistics, students must satisfactorily complete the courses in the specified categories as set out below. The categories cover an extended set of the University General Education Requirements, College of Engineering Requirements, as well as the Applied Mathematics & Statistics core and Technical Electives requirements. The normal length of the program is 140 credits.

Applied Mathematics & Statistics Math/Sciences Requirement (8 credits)

To satisfy the College of Engineering requirements, Applied Mathematics & Statistics requires the following two Math courses in addition to the GER:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 212</td>
<td>Calculus III</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MATH 213</td>
<td>Probability and Statistics for Engineers</td>
<td>4 cr.</td>
</tr>
</tbody>
</table>

Applied Mathematics & Statistics Core Requirements (43 Credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISYE 451</td>
<td>Operations Research I</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MATH 214</td>
<td>Mathematical & Statistical Software</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH 399</td>
<td>Internship</td>
<td>1 cr.</td>
</tr>
<tr>
<td>MATH 312</td>
<td>Complex Variables with Applications</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MATH 314</td>
<td>Real Analysis & Probability</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MATH 315</td>
<td>Advanced Linear Algebra</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH 316</td>
<td>Partial Differential Equations</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH 317</td>
<td>Nonparametric Statistics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH 318</td>
<td>Multivariate Statistics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH 319</td>
<td>Numerical Analysis I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH 412</td>
<td>Optimization</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH 419</td>
<td>Numerical Analysis II</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH 450</td>
<td>Senior Project I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH 451</td>
<td>Senior Project II</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>

Applied Mathematics & Statistics Science/Engineering Electives (12 credits)

Students can choose from the below list to satisfy their Science/Engineering Elective requirements for Applied Mathematics & Statistics. Additional courses may be approved by the department as science/engineering electives.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMED 202</td>
<td>Biomedical Engineering Fundamentals</td>
<td>4 cr.</td>
</tr>
<tr>
<td>BMED 211</td>
<td>Physiological Systems and Modeling I</td>
<td>4 cr.</td>
</tr>
<tr>
<td>BMED 212</td>
<td>Physiological Systems and Modeling II</td>
<td>4 cr.</td>
</tr>
<tr>
<td>CHEM 211</td>
<td>Organic Chemistry</td>
<td>4 cr.</td>
</tr>
<tr>
<td>CHEM 311</td>
<td>Biochemistry</td>
<td>4 cr.</td>
</tr>
<tr>
<td>CMPE 211</td>
<td>Object-Oriented Programming</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ECON 120</td>
<td>Engineering Economics</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>
Applied Mathematics & Statistics Technical Electives (15 credits)
To satisfy the B.Sc. Applied Mathematics & Statistics Technical Elective requirement, the students must take courses from the following list. Students may be allowed to choose technical electives from the Financial Mathematics concentration and Mathematical Biology concentration with department approval.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 200</td>
<td>Statics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ISYE 211</td>
<td>Probabilities with Applications</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ISYE 331</td>
<td>Stochastic Processes</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ISYE 341</td>
<td>Simulation Analysis and Design</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ISYE 351</td>
<td>Production and Operations Management</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ISYE 371</td>
<td>Supply Chain and Logistics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ISYE 431</td>
<td>Forecasting and Time Series</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ISYE 441</td>
<td>Advanced Simulation</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ISYE 480</td>
<td>Financial Engineering</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 201</td>
<td>Engineering Dynamics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 225</td>
<td>Mechanics of Solids</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MECH 240</td>
<td>Thermodynamics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 335</td>
<td>Fluid Mechanics</td>
<td>4 cr.</td>
</tr>
</tbody>
</table>

Applied Mathematics & Statistics - Financial Mathematics (Concentration)
Students may select a Financial Mathematics Concentration before selecting the Science/Engineering Electives. A concentration at Khalifa University leads to a specialized award or degree and will be specified on the diploma and the student’s academic record (transcript).

The Financial Mathematics concentration requires the student to select ECON 120 and ISYE 480 from the list of Science/Engineering Electives and replace all technical electives with the following 5 courses.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 411</td>
<td>Modern Algebra</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH 413</td>
<td>Game Theory</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH 414</td>
<td>Discrete Mathematics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH 415</td>
<td>Design of Experiments</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH 416</td>
<td>Sample Survey Design & Analysis</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>

Applied Mathematics & Statistics - Mathematical Biology (Concentration)
Students may select a Mathematical Biology Concentration before selecting their Science/Engineering Electives.

The Mathematical Biology concentration requires the student to select BMED 202, BMED 211 from the
list of Science/Engineering Electives and replace all technical electives with the following 5 courses.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 431</td>
<td>Computational Methods in Biology</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH 432</td>
<td>Mathematical Models in Biology</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH 433</td>
<td>Biostatistics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH 434</td>
<td>Bioinformatics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH 435</td>
<td>Mathematical Imaging</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>

Typical sequence for a B.Sc. Applied Mathematics & Statistics

<table>
<thead>
<tr>
<th>Year</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ENGL 111 English</td>
<td>4 cr.</td>
</tr>
<tr>
<td>1</td>
<td>MATH 111 Calculus I</td>
<td>4 cr.</td>
</tr>
<tr>
<td>1</td>
<td>CHEM 115 Introduction</td>
<td>4 cr.</td>
</tr>
<tr>
<td></td>
<td>to General Chemistry</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ENGR 111 Engineering</td>
<td>4 cr.</td>
</tr>
<tr>
<td></td>
<td>Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 112 English</td>
<td>4 cr.</td>
</tr>
<tr>
<td>1</td>
<td>MATH 112 Calculus II</td>
<td>4 cr.</td>
</tr>
<tr>
<td>1</td>
<td>PHYS 121 University</td>
<td>4 cr.</td>
</tr>
<tr>
<td></td>
<td>Physics I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HUMA XXX Humanities</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>and Social Sciences</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MATH 212 Calculus III</td>
<td>4 cr.</td>
</tr>
<tr>
<td>2</td>
<td>PHYS 122 University</td>
<td>4 cr.</td>
</tr>
<tr>
<td></td>
<td>Physics II</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>HUMA XXX Humanities</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>and Social Sciences</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MATH 213 Probability</td>
<td>4 cr.</td>
</tr>
<tr>
<td></td>
<td>and Statistics for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 112 English</td>
<td>4 cr.</td>
</tr>
<tr>
<td>3</td>
<td>MATH 211 Differential</td>
<td>4 cr.</td>
</tr>
<tr>
<td>3</td>
<td>Equations and Linear</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Algebra</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MATH 212 Calculus III</td>
<td>4 cr.</td>
</tr>
<tr>
<td>3</td>
<td>MATH 214 Mathematical</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>and Statistical Software</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>HUMA XXX Humanities</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>and Social Sciences</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MATH 311 Innovation &</td>
<td>4 cr.</td>
</tr>
<tr>
<td></td>
<td>Entrepreneurship in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BUSS 301 Inside</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Organizations</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MATH 419 Numerical</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Analysis II</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MATH 412 Optimization</td>
<td>3 cr.</td>
</tr>
<tr>
<td>4</td>
<td>Technical Elective</td>
<td>3 cr.</td>
</tr>
<tr>
<td>4</td>
<td>Technical Elective</td>
<td>3 cr.</td>
</tr>
<tr>
<td>4</td>
<td>Technical Elective</td>
<td>3 cr.</td>
</tr>
<tr>
<td>4</td>
<td>MATH 450 Senior Project</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MATH 451 Senior Project</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

Biomedical Engineering (BME) is a discipline in which engineering science and technology are applied to problems in biology and medicine. It covers a wide spectrum of activities including the development of advanced micro-/nano-technologies and biomaterials for improved implantable medical devices; the engineering of molecular, cellular, and tissue approaches and constructs; and the enhancement and application of medical instrumentation and imaging technologies. Ultimately, these advances have significant potential for advancing scientific understanding of the human body and disease, for the development of advanced medical devices such as artificial organs and limbs, and for the overall improvement of human health.

The demand for biomedical engineers in the UAE and the region continues to expand in alignment with the growth of the medical industry, health care, and hospital facilities. Biomedical Engineering graduates will have opportunities both for employment in established biomedical companies and for entrepreneurial endeavours. They are well prepared for advanced educational opportunities in both masters and doctoral programs as well as in professional degrees including the Medical Doctor (M.D.) and the Masters in Public Health (M.P.H.). In particular, the four-year B.Sc. degree in Biomedical Engineering will lay the quantitative and experimental foundation for students who pursue the four-year M.D. degree from the proposed Khalifa University Medical School. Such unique training that follows the American model of education is foreseen to be of great value in producing physicians capable of harnessing the power of engineering to understand and manipulate complex biomedical systems, and to confront health care challenges.

Bachelor of Science (B.Sc.) in Biomedical Engineering

The undergraduate biomedical engineering program at Khalifa University provides a solid foundation in both engineering and the life sciences. The curriculum integrates engineering and molecular and cellular biology into a single BME core. In addition, each student selects an area of specialization that provides more depth in a selected area of Biomedical Engineering. The instructional program is designed to impart knowledge of contemporary issues relevant to the health challenges in the UAE and at the forefront of biomedical engineering research in student-centered, collaborative learning environments. Our overall goal is to produce high quality engineers who will be leaders in their field and who are well equipped to pursue further graduate degrees, medical school, or professional careers.

Program Objectives

- Graduates will meet the expectations of employers of Biomedical engineers.
- Qualified graduates will pursue advanced study if they so desire.

Student Outcomes

Students graduating from the Department of Biomedical Engineering degree program will have the following abilities:

(a)	An ability to apply knowledge of mathematics, science, and engineering.
(b)	An ability to design and conduct experiments, as well as to analyze and interpret data.
(c)	An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
(d)	An ability to function on multi-disciplinary teams.
(e)	An ability to identify, formulate, and solve engineering problems.
(f)	An understanding of professional and ethical responsibility.
(g)	An ability to communicate effectively.
To be recommended for the degree of B.Sc. in Biomedical Engineering, students must satisfactorily complete the courses in the specified categories as set out below. The categories cover an extended set of the General Education requirements, College of Engineering requirement, as well as the Biomedical Engineering core requirements and Area of Specialization. The program includes a total of 140 credits of required coursework.

Biomedical Engineering Math/Sciences Requirement (8 credits)

To satisfy the College of Engineering requirements, Biomedical Engineering requires the following additional Math and Science courses.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 213</td>
<td>Probability and Statistics for Engineers</td>
<td>4 cr.</td>
</tr>
<tr>
<td>CHEM 211</td>
<td>Organic Chemistry</td>
<td>4 cr.</td>
</tr>
</tbody>
</table>

Biomedical Engineering Course Requirements (64 credits)

The BME courses have been divided into three categories: Core requirements (45 credits) provide the foundational material, capstone design and internship experience, required for all BME students. Technical electives (16 credits) provide depth in targeted technical areas, used to fulfill the area of specialization. BME students are also required to take an additional free-elective (3 credits), beyond the college requirements.

<table>
<thead>
<tr>
<th>BME Core Courses (45 credits)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMED 202 Biomedical Engineering Fundamentals</td>
<td>4 cr.</td>
</tr>
<tr>
<td>BMED 211 Physiological Systems and Modeling I</td>
<td>4 cr.</td>
</tr>
<tr>
<td>BMED 212 Physiological Systems and Modeling II</td>
<td>4 cr.</td>
</tr>
<tr>
<td>BMED 321 Mechanics for Biomedical Engineers</td>
<td>4 cr.</td>
</tr>
<tr>
<td>BMED 331 Biotransport Phenomena</td>
<td>4 cr.</td>
</tr>
<tr>
<td>BMED 341 Molecular and Cellular Physiology I</td>
<td>4 cr.</td>
</tr>
<tr>
<td>BMED 342 Molecular and Cellular Physiology II</td>
<td>4 cr.</td>
</tr>
<tr>
<td>BMED 351 Biomedical Circuits and Signals</td>
<td>4 cr.</td>
</tr>
<tr>
<td>BMED 352 Fundamentals of Biomedical Signal Processing</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ENGR 399 Biomedical Engineering Internship</td>
<td>1 cr.</td>
</tr>
<tr>
<td>BMED 497 Senior Design Project I</td>
<td>4 cr.</td>
</tr>
<tr>
<td>BMED 498 Senior Design Project II</td>
<td>4 cr.</td>
</tr>
</tbody>
</table>
Biomedical Engineering Course Requirements (64 credits)
Every BME student must select 4 courses (16 credits total) from one of the areas of specialization offered by the Department to fulfill the technical-elective requirements. At present, two areas are offered:

Regenerative Medicine

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 311</td>
<td>Biochemistry</td>
<td>3-3-4</td>
</tr>
<tr>
<td>BMED 322</td>
<td>Functional Biomechanics</td>
<td>3-3-4</td>
</tr>
<tr>
<td>BMED 411</td>
<td>Biomaterials</td>
<td>3-3-4</td>
</tr>
<tr>
<td>BMED 412</td>
<td>Tissue Engineering and Regeneration</td>
<td>3-3-4</td>
</tr>
<tr>
<td>BMED 413</td>
<td>Application of Bio molecular Tools</td>
<td>2-4-4</td>
</tr>
<tr>
<td>BMED 430</td>
<td>Bioinformatics</td>
<td>2-4-4</td>
</tr>
</tbody>
</table>

Human Augmentation

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMED 322</td>
<td>Functional Biomechanics</td>
<td>3-3-4</td>
</tr>
<tr>
<td>BMED 421</td>
<td>Physiological Control Systems</td>
<td>3-3-4</td>
</tr>
<tr>
<td>BMED 422</td>
<td>Rehabilitation Engineering</td>
<td>3-3-4</td>
</tr>
<tr>
<td>BMED 430</td>
<td>Bioinformatics</td>
<td>2-4-4</td>
</tr>
</tbody>
</table>

In the future, it is expected that additional areas of specialization will be offered as per faculty specialties and available workload and as per student and employer interests.

Additional Free Electives – 3 credits
BME students have 3 additional free-elective credits beyond the College of Engineering requirements for a total of 9 Free Electives credits required for graduation.

Undergraduate Research in Biomedical Engineering
Students are provided research opportunities in the laboratories of the BME faculty members. These research experiences can receive course credit using the BME Independent Study courses. These courses can be used as Free Electives. At most 9 credits of Independent Study may be used for graduation.

<table>
<thead>
<tr>
<th>BME Independent Study Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMED 291 Independent Study I</td>
<td>1–4</td>
</tr>
<tr>
<td>BMED 391 Independent Study II</td>
<td>1–4</td>
</tr>
<tr>
<td>BMED 491 Independent Study III</td>
<td>1–4</td>
</tr>
</tbody>
</table>

Typical sequence for a B.Sc. degree in Biomedical Engineering

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 111 English Communication I</td>
<td>4 cr</td>
</tr>
<tr>
<td>MATH 111 Calculus I</td>
<td>4 cr</td>
</tr>
<tr>
<td>CHEM 115 Introduction to General Chemistry for Engineers</td>
<td>4 cr</td>
</tr>
<tr>
<td>ENGR 111 Engineering Design</td>
<td>4 cr</td>
</tr>
</tbody>
</table>
DEPARTMENT OF CIVIL INFRASTRUCTURE AND ENVIRONMENTAL ENGINEERING

Introduction

Civil engineering is one of the broadest engineering disciplines, encompassing many interdependent technical specialties. Civil engineers plan, design, and supervise construction of a wide variety of facilities such as space stations, offshore structures, bridges, buildings, tunnels, highways, transit systems, dams, airports, irrigation projects, distribution facilities for water, and collection and treatment facilities for wastewater and hazardous wastes. Civil engineers are problem solvers. They give solutions to pollution, aging infrastructure, traffic congestion, energy needs, floods, earthquakes, urban development, and community planning. Graduates may work at established public and private organizations or in entrepreneurial endeavours. Future career opportunities for civil engineers may range from project management to collaboration with architects, contractors, and government officials on construction efforts.

Bachelor of Science (B.Sc.) in Civil Engineering

This program lays the foundation for the core civil engineering disciplines while engaging students to study and understand the overall global civil engineering profession and industry. Principles of science and engineering are applied to the design and analysis of problems in civil engineering in well-designed course sequences to ensure that students gain hands on and problem-based learning experiences. The mission of the civil engineering program at Khalifa University is to provide solid high quality education and prepare students for successful careers in this field.

Program Objectives

- Graduates will meet the expectations of employers of Civil engineers.
- Qualified graduates will pursue advanced study if they so desire.
Student Outcomes

Students graduating from the Department of Civil Infrastructure and Environmental Engineering degree program will have the following abilities:

(a) An ability to apply knowledge of mathematics, science, and engineering.
(b) An ability to design and conduct experiments, as well as to analyze and interpret data.
(c) An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
(d) An ability to function on multi-disciplinary teams.
(e) An ability to identify, formulate, and solve engineering problems.
(f) An understanding of professional and ethical responsibility.
(g) An ability to communicate effectively.
(h) A recognition of the need for broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
(i) A recognition of the need for, and an ability to engage in life-long learning.
(j) A knowledge of contemporary issues.
(k) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Program Structure and Requirements

To be recommended for the degree of B.Sc. in Civil Engineering, students must satisfactorily complete the courses in the specified categories as set out below. The categories cover an extended set of the University General Education requirements, College of Engineering requirements, as well as Civil Engineering core and Technical Electives requirements.

Civil Engineering Math/Sciences Requirement (8 credits)

To satisfy the College of Engineering requirements, Aerospace Engineering requires the following two Math courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 212</td>
<td>Calculus III</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MATH 213</td>
<td>Probability and Statistics for Engineers</td>
<td>4 cr.</td>
</tr>
</tbody>
</table>

Civil Engineering Core Requirement (58 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 200</td>
<td>Statics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIVE 180</td>
<td>Science Elective*</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIVE 201</td>
<td>Engineering Graphics and Visualization</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIVE 225</td>
<td>Mechanics of Solids</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIVE 310</td>
<td>Geomatics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIVE 332</td>
<td>Fundamentals of Construction Engineering and Management</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIVE 335</td>
<td>Fluid Mechanics</td>
<td>4 cr.</td>
</tr>
<tr>
<td>CIVE 336</td>
<td>Civil Engineering Materials</td>
<td>4 cr.</td>
</tr>
</tbody>
</table>
The Science Elective should be approved by the Department.

Civil Engineering Technical Electives (6 credits)

The following is a sample list of courses that will satisfy the technical electives in the Civil Engineering Program. The student must select a total of 6 credits from this list. At most 3 credits of the technical electives may be at 300-level and at most 3 credits may be independent study. In addition, courses from the list below may be taken to satisfy the free electives requirement.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 338</td>
<td>Geotechnical Engineering</td>
<td>4 cr.</td>
</tr>
<tr>
<td>CIVE 340</td>
<td>Behavior & Analysis of Structures</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIVE 341</td>
<td>Design of Steel Structures</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIVE 370</td>
<td>Introduction to Environmental Engineering</td>
<td>4 cr.</td>
</tr>
<tr>
<td>CIVE 380</td>
<td>Transportation Engineering</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ENGR 399</td>
<td>Civil Engineering Internship</td>
<td>1 cr.</td>
</tr>
<tr>
<td>CIVE 442</td>
<td>Design of Concrete Structures</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CIVE 470</td>
<td>Foundation Engineering</td>
<td>4 cr.</td>
</tr>
<tr>
<td>CIVE 497</td>
<td>Senior Design Project I</td>
<td>2 cr.</td>
</tr>
<tr>
<td>CIVE 498</td>
<td>Senior Design Project II</td>
<td>2 cr.</td>
</tr>
</tbody>
</table>

* The Science Elective should be approved by the Department.
Typical sequence for a B.Sc. degree in Civil Engineering

<table>
<thead>
<tr>
<th>Year</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 111 English Communication I</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>MATH 111 Calculus I</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>CHEM 115 Introduction to General Chemistry for Engineers</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>ENGR 111 Engineering Design</td>
<td>4 cr</td>
</tr>
<tr>
<td>Summer</td>
<td>HUMA XXX Humanities and Social Sciences</td>
<td>3 cr</td>
</tr>
<tr>
<td></td>
<td>Science Elective</td>
<td>3 cr</td>
</tr>
<tr>
<td></td>
<td>MATH 211 Differential Equations and Linear Algebra</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>PHYS 122 University Physics II</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>ENGR 200 Statics</td>
<td>3 cr</td>
</tr>
<tr>
<td></td>
<td>CIVE 180 Engineering Graphics and Visualization</td>
<td>3 cr</td>
</tr>
<tr>
<td>Year 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 112 English Communication II</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>MATH 112 Calculus II</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>PHYS 121 University Physics I</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>ENGR 112 Introduction to Computing</td>
<td>4 cr</td>
</tr>
<tr>
<td>Summer</td>
<td>HUMA XXX Humanities and Social Sciences</td>
<td>3 cr</td>
</tr>
<tr>
<td></td>
<td>HUMA XXX Humanities and Social Sciences</td>
<td>3 cr</td>
</tr>
<tr>
<td></td>
<td>CIVE 370 Introduction to Environmental Engineering</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>CIVE 332 Fundamentals of Construction Engineering and Management</td>
<td>3 cr</td>
</tr>
<tr>
<td></td>
<td>CIVE 336 Civil Engineering Materials</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>CIVE 340 Behavior & Analysis of Structures</td>
<td>3 cr</td>
</tr>
<tr>
<td></td>
<td>Free Elective</td>
<td>3 cr</td>
</tr>
<tr>
<td>Year 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGR 399 Internship</td>
<td>1 cr</td>
</tr>
<tr>
<td></td>
<td>CIVE 497 Senior Design Project I</td>
<td>2 cr</td>
</tr>
<tr>
<td></td>
<td>BUSS 201 Fundamentals of Accounting and Finance</td>
<td>3 cr</td>
</tr>
<tr>
<td></td>
<td>ENGR 311 Innovation & Entrepreneurship in Engineering Design</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>Technical Elective</td>
<td>3 cr</td>
</tr>
<tr>
<td>Year 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIVE 470 Foundation Engineering</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>HUMA XXX Humanities and Social Sciences</td>
<td>3 cr</td>
</tr>
</tbody>
</table>

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Introduction
The ECE department supports the mutual needs of business, industry, and academia in electrical and computer engineering research, development, and education. This is accomplished by providing
appropriate mechanisms for technical exchange, collaboration, and employment of students.

ECE offers B.Sc. degrees in Electrical and Electronic, Communication, and Computer Engineering as well as M.Sc. and Ph.D. programs in ECE. The department also offers concentrations in Power Systems and Software Systems. ECE has established Khalifa University ICT Research Center encompassing 5 Research Labs conducting multidisciplinary research in Communication and Information Systems, information security, e-services and networks, multimedia communications, and embedded mixed signal systems. The Research in the department is aligned with the 2030 Abu Dhabi strategic plan calling for diversification of the economy beyond oil and gas and for promoting innovation, entrepreneurship and spinoffs in the semiconductor, energy and ICT sectors among others.

The ECE programs offer many benefits to business and industry. There is the opportunity to influence research and education, and to participate in long-range technical assessments of problems and directions in the field. Contacts with prospective employers are established easily; affiliates have early access to student resumes, and to student and faculty publications. Internships in local and national industry provide students with a complementary element to their education. The result of this interaction is greater excellence in both the research and teaching missions of the ECE department.

Bachelor of Science (B.Sc.) in Communication Engineering

The continued growth in all areas of communication technology means that communication engineering graduates are highly desired for positions in new product design and innovation, as well as product and systems management. All types of modern communications, from mobile phones and satellites, to digital television and internet, require the skills of communication engineers and provide a platform for rapid career development.

The communication engineering B.Sc. program at Khalifa University offers students excellent quality education needed by highly qualified future communication engineers. The program gives the students the opportunity to select technical electives from a pool of courses.

Program Objectives

- Graduates will meet the expectations of employers of Communication engineers.
- Qualified graduates will pursue advanced study if they so desire.

Student Outcomes

Students graduating with a Communication Engineering degree will have the following abilities:

(a)	An ability to apply knowledge of mathematics, science, and engineering.
(b)	An ability to design and conduct experiments, as well as to analyze and interpret data.
(c)	An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
(d)	An ability to function on multi-disciplinary teams.
(e)	An ability to identify, formulate, and solve engineering problems.
(f)	An understanding of professional and ethical responsibility.
(g)	An ability to communicate effectively.
(h)	A recognition of the need for broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
(i)	A recognition of the need for, and an ability to engage in life-long learning.
(j)	A knowledge of contemporary issues.
(k)	An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Program Structure and Requirements

To be recommended for the degree of B.Sc. in Communication Engineering, students must satisfactorily complete the courses in the specified categories as set out below. The categories cover an extended set of the University General Education Requirements, College of Engineering requirements, as well as Communication Engineering core and Technical Electives requirements. The normal length of the program is 140 credits.

Communication Engineering Math/Sciences Requirement (8 credits)

To satisfy the College of Engineering requirements, Communication Engineering requires the following additional Math courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 311</td>
<td>Probability and Statistics with Discrete Mathematics</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MATH 312</td>
<td>Complex Variables with Applications</td>
<td>4 cr.</td>
</tr>
</tbody>
</table>

Communication Engineering Core Requirement (55 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMME 200</td>
<td>Principles of Telecommunications</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CMME 300</td>
<td>Communication Systems</td>
<td>4 cr.</td>
</tr>
<tr>
<td>CMME 302</td>
<td>Digital Communications I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CMME 304</td>
<td>Information Theory</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CMME 310</td>
<td>Applied Electromagnetics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CMME 320</td>
<td>Communication Networks</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CMME 400</td>
<td>Wireless Communications</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CMME 410</td>
<td>Antennas and Propagation</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CMME 497</td>
<td>Senior Design Project I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CMME 498</td>
<td>Senior Design Project II</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CMPE 211</td>
<td>Object Oriented Programming</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ELCE 214</td>
<td>Electric Circuits</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ELCE 230</td>
<td>Digital Logic Design</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ELCE 302</td>
<td>Signal Processing</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ELCE 322</td>
<td>Electronic Circuits and Devices</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ELCE 332</td>
<td>Microprocessor Systems</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ENGR 399</td>
<td>Engineering Internship</td>
<td>1 cr.</td>
</tr>
</tbody>
</table>

Communication Engineering Technical Electives (9 credits)

Students are required to take a total of 9 credits (three courses) of technical electives in the Communication Engineering Program. At most 3 credits of the technical electives may be at 300-level and at most 3 credits may be independent study. Students can choose from the below list to satisfy both their technical and/or free elective requirements. Additional courses may be approved by the department as technical electives.

Sample List of Communication Engineering Program Technical Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMME 391</td>
<td>Independent Study I</td>
<td>1-3 cr.</td>
</tr>
<tr>
<td>CMME 401</td>
<td>Digital Communications II</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CMME 402</td>
<td>Modulation and Coding Techniques</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>
Typical sequence for a B.Sc. degree in Communication Engineering

Year 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 111</td>
<td>English Communication I</td>
<td>4 cr</td>
</tr>
<tr>
<td>MATH 111</td>
<td>Calculus I</td>
<td>4 cr</td>
</tr>
<tr>
<td>CHEM 115</td>
<td>Introduction to General Chemistry</td>
<td>4 cr</td>
</tr>
<tr>
<td>ENGR 111</td>
<td>Engineering Design</td>
<td>4 cr</td>
</tr>
<tr>
<td>HUMA XXX</td>
<td>Humanities and Social Sciences</td>
<td>3 cr</td>
</tr>
<tr>
<td>MATH 211</td>
<td>Differential Equations and Linear</td>
<td>4 cr</td>
</tr>
<tr>
<td>PHYS 122</td>
<td>University Physics II</td>
<td>4 cr</td>
</tr>
<tr>
<td>ENGR 112</td>
<td>Introduction to Computing</td>
<td>4 cr</td>
</tr>
<tr>
<td>HUMA XXX</td>
<td>Humanities and Social Sciences</td>
<td>3 cr</td>
</tr>
<tr>
<td>ELCE 230</td>
<td>Digital Logic Design</td>
<td>4 cr</td>
</tr>
<tr>
<td>CMPE 211</td>
<td>Object-Oriented Programming</td>
<td>3 cr</td>
</tr>
</tbody>
</table>

Summer

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMA XXX</td>
<td>Humanities and Social Sciences</td>
<td>3 cr</td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 211</td>
<td>Differential Equations and Linear</td>
<td>4 cr</td>
</tr>
<tr>
<td>PHYS 122</td>
<td>University Physics II</td>
<td>4 cr</td>
</tr>
<tr>
<td>HUMA XXX</td>
<td>Humanities and Social Sciences</td>
<td>3 cr</td>
</tr>
<tr>
<td>ELCE 230</td>
<td>Digital Logic Design</td>
<td>4 cr</td>
</tr>
<tr>
<td>CMPE 211</td>
<td>Object-Oriented Programming</td>
<td>3 cr</td>
</tr>
<tr>
<td>BUSS 201</td>
<td>Fundamentals of Accounting and Finance</td>
<td>3 cr</td>
</tr>
</tbody>
</table>

Summer

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMA XXX</td>
<td>Humanities and Social Sciences</td>
<td>3 cr</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELCE 302</td>
<td>Signal Processing</td>
<td>4 cr</td>
</tr>
<tr>
<td>CMME 300</td>
<td>Communication Systems</td>
<td>4 cr</td>
</tr>
<tr>
<td>CMME 310</td>
<td>Applied Electromagnetics</td>
<td>3 cr</td>
</tr>
<tr>
<td>ELCE 322</td>
<td>Electronic Circuits and Devices</td>
<td>4 cr</td>
</tr>
<tr>
<td>HUMA XXX</td>
<td>Humanities and Social Sciences</td>
<td>3 cr</td>
</tr>
</tbody>
</table>

Summer

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 399</td>
<td>Internship</td>
<td>1 cr</td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMME 400</td>
<td>Wireless Communications</td>
<td>3 cr</td>
</tr>
<tr>
<td>Free Elective</td>
<td></td>
<td>3 cr</td>
</tr>
<tr>
<td>Technical Elective</td>
<td></td>
<td>3 cr</td>
</tr>
<tr>
<td>CMME 487</td>
<td>Senior Design Project I</td>
<td>3 cr</td>
</tr>
</tbody>
</table>

Bachelor of Science (B.Sc.) in Computer Engineering

Computer Engineering is concerned with the design and development of computers and computer-based systems. It involves the study of hardware, software, and networking. A Computer Engineering degree provides a strong understanding of the relationship between computer hardware and software and all related issues. It is the key to many career opportunities in both government and industry sectors. Khalifa University’s program also gives students the opportunity to specialize in software systems.
Program Structure and Requirements
To be recommended for the degree of B.Sc. in Computer Engineering, students must satisfactorily complete the courses in the specified categories as set out below. The categories cover an extended set of the University General Education Requirements, College of Engineering requirements, as well as Computer Engineering core and Technical Electives requirements. Students can also choose the Software Systems concentration. The normal length of the program is 140 credits.

Computer Engineering Math/Sciences Requirement (8 credits)
To satisfy the College of Engineering requirements, Communication Engineering requires the following additional Math courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 311</td>
<td>Probability and Statistics with Discrete Mathematics</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MATH 312</td>
<td>Complex Variables with Applications</td>
<td>4 cr.</td>
</tr>
</tbody>
</table>

Computer Engineering Core Requirement (52 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMME 200</td>
<td>Principles of Telecommunications</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CMPE 211</td>
<td>Object Oriented Programming</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CMPE 212</td>
<td>Introduction to Software Engineering</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CMPE 221</td>
<td>Computer Architecture and Organization</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CMPE 312</td>
<td>Operating Systems</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CMPE 320</td>
<td>Data Structures and Algorithms</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>

Student Outcomes
Students graduating with a Computer Engineering degree will have the following abilities:

(a) An ability to apply knowledge of mathematics, science, and engineering.
(b) An ability to design and conduct experiments, as well as to analyze and interpret data.
(c) An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
(d) An ability to function on multi-disciplinary teams.
(e) An ability to identify, formulate, and solve engineering problems.
(f) An understanding of professional and ethical responsibility.
(g) An ability to communicate effectively.
(h) A recognition of the need for broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
(i) A recognition of the need for, and an ability to engage in life-long learning.
(j) A knowledge of contemporary issues
(k) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Program Objectives
> Graduates will meet the expectations of employers of Computer engineers.
> Qualified graduates will pursue advanced study if they so desire.

Program Objectives
Graduates will meet the expectations of employers of Computer engineers. Qualified graduates will pursue advanced study if they so desire.

Program Objectives
Graduates will meet the expectations of employers of Computer engineers. Qualified graduates will pursue advanced study if they so desire.
Computer Engineering Technical Electives (12 credits)

Students are required to take a total of 12 credits (four courses) of technical electives in the Computer Engineering Program. At most 3 credits of the technical electives may be at 300-level and at most 3 credits may be independent study. Students can choose from the below list to satisfy both their technical and/or free elective requirements. Additional courses may be approved by the department as technical electives.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPE 324</td>
<td>Computer Networks</td>
<td>4 cr.</td>
</tr>
<tr>
<td>CMPE 402</td>
<td>Embedded Systems</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CMPE 497</td>
<td>Senior Design Project I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CMPE 498</td>
<td>Senior Design Project II</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ELCE 214</td>
<td>Electric Circuits</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ELCE 230</td>
<td>Digital Logic Design</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ELCE 302</td>
<td>Signals Processing</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ELCE 322</td>
<td>Electronic Circuits and Devices</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ELCE 332</td>
<td>Microprocessor Systems</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ENGR 399</td>
<td>Engineering Internship</td>
<td>1 cr.</td>
</tr>
</tbody>
</table>

Computer Engineering – Software Systems (Concentration)

Students may select a Software Systems concentration before selecting the technical free electives. A concentration at Khalifa University leads to a specialized award or degree and will be specified on the diploma and the student’s academic record (transcript).

The Software Systems concentration requires the student to replace all technical electives (12 credits) with the following 4 courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPE 411</td>
<td>Introduction to Human Computer Interfaces</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>
Typical sequence for a B.Sc. degree in Computer Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 111</td>
<td>English Communication I</td>
<td>4 cr</td>
</tr>
<tr>
<td>MATH 111</td>
<td>Calculus I</td>
<td>4 cr</td>
</tr>
<tr>
<td>CHEM 115</td>
<td>Introduction to General Chemistry</td>
<td>4 cr</td>
</tr>
<tr>
<td>for Engineers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGR 111</td>
<td>Engineering Design</td>
<td>4 cr</td>
</tr>
<tr>
<td>HUMA XXX</td>
<td>Humanities and Social Sciences</td>
<td>3 cr</td>
</tr>
<tr>
<td>MATH 211</td>
<td>Differential Equations and Linear</td>
<td>4 cr</td>
</tr>
<tr>
<td>Algebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 122</td>
<td>University Physics II</td>
<td>4 cr</td>
</tr>
<tr>
<td>HUMA xxx</td>
<td></td>
<td>3 cr</td>
</tr>
<tr>
<td>ELCE 230</td>
<td>Digital Logic Design</td>
<td>4 cr</td>
</tr>
<tr>
<td>CMPE 211</td>
<td>Object-Oriented Programming</td>
<td>3 cr</td>
</tr>
<tr>
<td>CMPE 320</td>
<td>Data Structures and Algorithms</td>
<td>3 cr</td>
</tr>
<tr>
<td>CMPE 212</td>
<td>Introduction to Software Engineering</td>
<td>3 cr</td>
</tr>
<tr>
<td>CMPE 221</td>
<td>Computer Architecture and Organization</td>
<td>3 cr</td>
</tr>
<tr>
<td>ELCE 322</td>
<td>Electronic Circuits and Devices</td>
<td>4 cr</td>
</tr>
<tr>
<td>ELCE 302</td>
<td>Signal Processing</td>
<td>4 cr</td>
</tr>
<tr>
<td>CMPE 402</td>
<td>Embedded Systems</td>
<td>3 cr</td>
</tr>
<tr>
<td>HUMA XXX</td>
<td>Humanities and Social Sciences</td>
<td>3 cr</td>
</tr>
<tr>
<td>Free Elective</td>
<td></td>
<td>3 cr</td>
</tr>
<tr>
<td>Technical Elective</td>
<td></td>
<td>3 cr</td>
</tr>
<tr>
<td>CMPE 497</td>
<td>Senior Design Project I</td>
<td>3 cr</td>
</tr>
<tr>
<td>CMPE 412</td>
<td>Database Systems</td>
<td>3 cr</td>
</tr>
<tr>
<td>CMPE 413</td>
<td>Software Testing and Quality Assurance</td>
<td>3 cr</td>
</tr>
<tr>
<td>CMPE 415</td>
<td>Software Architecture and Design</td>
<td>3 cr</td>
</tr>
<tr>
<td>CMPE XXX</td>
<td>One additional upper level software course in place of free elective</td>
<td>3 cr</td>
</tr>
</tbody>
</table>

Bachelor of Science (B.Sc.) in Electrical and Electronic Engineering

Electrical and Electronic systems are at the heart of the new industrial revolution and they play a vital role that affects nearly every aspect of our modern daily lives. These systems require professional engineers for their design, development, commissioning and service. The demand for such engineers is growing in UAE because of the new electrical and electronic industries.
The B.Sc. in Electrical and Electronic Engineering program at Khalifa University offers students quality education that provides them with the knowledge, techniques and skills that will be needed by the next generation of highly qualified engineers. The program has well-designed core courses to ensure that students gain hands on and problem-based learning experiences. The program also gives the students the opportunity to select technical electives from a pool of courses or to specialize in Power Systems.

Program Objectives
> Graduates will meet the expectations of employers of Electrical and Electronic Engineering.
> Qualified graduates will pursue advanced study if they so desire.

Student Outcomes

(a)	An ability to apply knowledge of mathematics, science, and engineering.
(b)	An ability to design and conduct experiments, as well as to analyze and interpret data.
(c)	An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
(d)	An ability to function on multi-disciplinary teams.
(e)	An ability to identify, formulate, and solve engineering problems.
(f)	An understanding of professional and ethical responsibility.
(g)	An ability to communicate effectively.
(h)	A recognition of the need for broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
(i)	A recognition of the need for, and an ability to engage in life-long learning.
(j)	A knowledge of contemporary issues.
(k)	An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Program Structure and Requirements

To be recommended for the degree of B.Sc. in Electrical and Electronic Engineering, students must satisfactorily complete the courses in the specified categories as set out below. The categories cover an extended set of the University General Education Requirements, the College of Engineering requirements, as well as the Electrical and Electronic Engineering core and Technical Electives requirements. Students may also select the Power System concentration. The normal length of the program is 140 credits.

Electrical and Electronic Engineering Math/Sciences Requirement (8 credits)

To satisfy the College of Engineering requirements, Electrical and Electronic Engineering requires the following additional Math courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 311</td>
<td>Probability and Statistics with Discrete Mathematics</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MATH 312</td>
<td>Complex Variables with Applications</td>
<td>4 cr.</td>
</tr>
</tbody>
</table>

Electrical and Electronic Engineering Core Requirement (52 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMME 200</td>
<td>Principles of Telecommunications</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CMME 300</td>
<td>Communication Systems</td>
<td>4 cr.</td>
</tr>
<tr>
<td>CMME 310</td>
<td>Applied Electromagnetics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CMPE 211</td>
<td>Object Oriented Programming</td>
<td>3 cr.</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>ELCE 214</td>
<td>Electric Circuits</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ELCE 222</td>
<td>Introduction to Semiconductor Devices</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ELCE 230</td>
<td>Digital Logic Design</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ELCE 302</td>
<td>Signals Processing</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ELCE 322</td>
<td>Electronic Circuits and Devices</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ELCE 332</td>
<td>Microprocessor Systems</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ELCE 340</td>
<td>Electromechanical Systems</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ELCE 344</td>
<td>Feedback Control Systems</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ELCE 497</td>
<td>Senior Design Project I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ELCE 498</td>
<td>Senior Design Project II</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ENGR 399</td>
<td>Engineering Internship</td>
<td>1 cr.</td>
</tr>
</tbody>
</table>

Electrical and Electronic Engineering Technical Electives (12 credits)

Students are required to take a total of 12 credits (four courses) of technical electives in the Electrical and Electronic Engineering Program. At most 3 credits of the technical electives may be at 300-level and at most 3 credits may be independent study. Students can choose from the below list to satisfy both their technical and/or free elective requirements. Additional courses may be approved by the department as technical electives.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPE 456</td>
<td>Image Processing and Analysis</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ELCE 391</td>
<td>Independent Study I</td>
<td>1-3 cr.</td>
</tr>
<tr>
<td>ELCE 421</td>
<td>Filter Synthesis</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ELCE 424</td>
<td>Microwave Circuits and Devices</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ELCE 426</td>
<td>Measurement and Instrumentation</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ELCE 430</td>
<td>Digital Systems Design</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ELCE 432</td>
<td>Embedded Systems Design and Applications</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ELCE 434</td>
<td>VLSI Systems Design</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ELCE 436</td>
<td>Analog Integrated Circuits Design</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ELCE 461</td>
<td>Power System Analysis</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ELCE 463</td>
<td>Power Distribution and Smart Grid Systems</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ELCE 464</td>
<td>Power System Stability and Control</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ELCE 465</td>
<td>High Voltage Engineering</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ELCE 466</td>
<td>Power Electronics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ELCE 491</td>
<td>Independent Study II</td>
<td>1-3 cr.</td>
</tr>
<tr>
<td>ELCE 495</td>
<td>Special Topics in Electronic Engineering</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>

Electrical and Electronic Engineering – Power Systems (Concentration)

Students may select a Power Systems concentration before selecting the technical free electives. A concentration at Khalifa University leads to a specialized award or degree and will be specified on the diploma and the student’s academic record (transcript).
The Power Systems concentration requires the student to replace all technical electives (12 credits) and one free elective (3 credits) with one of the following five courses.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELCE 461</td>
<td>Power System Analysis</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ELCE 463</td>
<td>Power Distribution and Smart Grid Systems</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ELCE 464</td>
<td>Power System Stability and Control</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ELCE 465</td>
<td>High Voltage Engineering</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ELCE 466</td>
<td>Power Electronics</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>

Typical sequence for a B.Sc. degree in Electrical and Electronic Engineering

<table>
<thead>
<tr>
<th>Year</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ENGL 111</td>
<td>English Communication I</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>MATH 111</td>
<td>Calculus I</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>CHEM 115</td>
<td>Introduction to General Chemistry for Engineers</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>ENGR 111</td>
<td>Engineering Design</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>ELCE 230</td>
<td>Digital Logic Design</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>MATH 112</td>
<td>Calculus II</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>PHYS 121</td>
<td>University Physics I</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>HUMA XXX</td>
<td>Humanities and Social Sciences</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>CMPE 211</td>
<td>Object-Oriented Programming</td>
<td>3 cr</td>
</tr>
<tr>
<td></td>
<td>ENGR 112</td>
<td>Introduction to Computing</td>
<td>4 cr</td>
</tr>
<tr>
<td>2</td>
<td>ELCE 214</td>
<td>Electric Circuits</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>ELCE 302</td>
<td>Signal Processing</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>CMME 310</td>
<td>Applied Electromagnetics</td>
<td>3 cr</td>
</tr>
<tr>
<td></td>
<td>ELCE 322</td>
<td>Electronic Circuits and Devices</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>CMME 300</td>
<td>Communication Systems</td>
<td>4 cr</td>
</tr>
<tr>
<td>3</td>
<td>HUMA XXX</td>
<td>Humanities and Social Sciences</td>
<td>3 cr</td>
</tr>
<tr>
<td></td>
<td>ELCE 302</td>
<td>Signal Processing</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>CMME 310</td>
<td>Applied Electromagnetics</td>
<td>3 cr</td>
</tr>
<tr>
<td></td>
<td>ELCE 322</td>
<td>Electronic Circuits and Devices</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>CMME 300</td>
<td>Communication Systems</td>
<td>4 cr</td>
</tr>
<tr>
<td>4</td>
<td>ENGR 399</td>
<td>Internship</td>
<td>1 cr</td>
</tr>
<tr>
<td></td>
<td>ELCE 344</td>
<td>Feedback Control System</td>
<td>4 cr</td>
</tr>
<tr>
<td></td>
<td>Technical Elective</td>
<td>3 cr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical Elective</td>
<td>3 cr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical Elective</td>
<td>3 cr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free Elective</td>
<td>3 cr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BUSS 301</td>
<td>Inside Organizations</td>
<td>3 cr</td>
</tr>
<tr>
<td></td>
<td>ELCE 497</td>
<td>Senior Design Project I</td>
<td>3 cr</td>
</tr>
<tr>
<td></td>
<td>ELCE 498</td>
<td>Senior Design Project II</td>
<td>3 cr</td>
</tr>
</tbody>
</table>
The Department of Humanities and Social Sciences is part of the College of Engineering. This Department does not offer undergraduate degree programs at present; however, it runs courses that support degree programs across the University. The general areas and the courses offered are listed below:

English Language Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 111</td>
<td>English Communication I</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ENGL 112</td>
<td>English Communication II</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ENGL 220</td>
<td>Technical Writing and Communication</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>

Business Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSS 201</td>
<td>Fundamentals of Accounting and Finance</td>
<td>3 cr.</td>
</tr>
<tr>
<td>BUSS 301</td>
<td>Inside Organizations</td>
<td>3 cr.</td>
</tr>
<tr>
<td>BUSS 395</td>
<td>Special Topics in Business Studies</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>

Humanities and Social Sciences Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMA 101</td>
<td>Arabic Language</td>
<td>3 cr.</td>
</tr>
<tr>
<td>HUMA 102</td>
<td>Islamic Culture</td>
<td>3 cr.</td>
</tr>
<tr>
<td>HUMA 105</td>
<td>Emirates Society</td>
<td>3 cr.</td>
</tr>
<tr>
<td>HUMA 106</td>
<td>Gulf Region Economic and Social Outlook</td>
<td>3 cr.</td>
</tr>
<tr>
<td>HUMA 110</td>
<td>Middle East Studies</td>
<td>3 cr.</td>
</tr>
<tr>
<td>HUMA 111</td>
<td>Islamic History</td>
<td>3 cr.</td>
</tr>
<tr>
<td>HUMA 112</td>
<td>Sciences in Islam</td>
<td>3 cr.</td>
</tr>
<tr>
<td>HUMA 130</td>
<td>Introduction to Linguistics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>HUMA 140</td>
<td>Introduction to Psychology</td>
<td>3 cr.</td>
</tr>
<tr>
<td>HUMA 141</td>
<td>Introduction to Sociology</td>
<td>3 cr.</td>
</tr>
<tr>
<td>HUMA 142</td>
<td>Introduction to Science and Technology Studies</td>
<td>3 cr.</td>
</tr>
<tr>
<td>HUMA 210</td>
<td>Introduction to Islamic Law</td>
<td>3 cr.</td>
</tr>
<tr>
<td>HUMA 211</td>
<td>Islam and Modernity</td>
<td>3 cr.</td>
</tr>
<tr>
<td>HUMA 212</td>
<td>History of Modern Science</td>
<td>3 cr.</td>
</tr>
<tr>
<td>HUMA 295</td>
<td>Special topics in Humanities</td>
<td>3 cr.</td>
</tr>
<tr>
<td>HUMA 220</td>
<td>Public Speaking</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ECON 120</td>
<td>Engineering Economics</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>
Introduction

Industrial and Systems (ISYE) Engineers make decisions concerning the best utilization of people, material, equipment, energy, and cost in achieving an organization’s objectives. ISYE graduates have the flexibility to work in a variety of applied setting, including manufacturing, production and operations, supply chain and logistics, transportation, healthcare systems, financial systems, etc. The use of the tools and techniques associated with industrial & systems engineering have significant potential for advancing scientific understanding of systems involving people, technology, and information for the development of better products or services. ISYE engineers are thought leaders often known for their big picture and vision of any business or enterprise setting. Their ability to work and manage a variety projects involving cross-functional teams consisting of several engineering disciplines offers them a rapid access to senior management positions in every organization and transforms them into capable and successful entrepreneurs. They are vital for businesses to become and to remain competitive in global markets.

Career specializations include: Production and operations managers, process engineers, quality managers, operations research analysts, supply chain managers, healthcare managers and others.

The ISYE Program at Khalifa University provides state-of-art undergraduate education to prepare students for successful and long-standing careers in the competitive global economy. The curriculum, led by world-class teachers, is based on strong fundamentals in operations research and is enriched by coursework that targets the specific needs of local industries. Students gain industrial experience through a summer internship and also have the opportunity to participate in international exchange programs during their junior year.

Bachelor of Science (B.Sc.) in Industrial and Systems Engineering

This program lays the foundation for the core industrial & systems engineering discipline while engaging students to study and understand the overall global industrial and systems profession and industry. Principles of science and engineering are applied to the design and analysis of problems in industrial and systems engineering in well-designed course sequences to ensure that students gain hands on and problem-based learning experiences. The mission of the industrial & systems engineering program at Khalifa University is to provide solid high quality education to prepare students for successful and long-standing careers in this competitive global economy.

Program Objectives

Graduates will meet the expectations of employers of Industrial & Systems engineers.
Qualified graduates will pursue advanced study if they so desire.

Student Outcomes

Students graduating from the Department of Industrial & Systems Engineering degree program will have the following abilities:

- An ability to apply knowledge of mathematics, science, and engineering.
- An ability to design and conduct experiments, as well as to analyze and interpret data.
- An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- An ability to function on multi-disciplinary teams.
- An ability to identify, formulate, and solve engineering problems.
- An understanding of professional and ethical responsibility.
- An ability to communicate effectively.
Program Structure and Requirements

To be recommended for the degree of B.Sc. in Industrial & Systems Engineering, students must satisfactorily complete the courses in the specified categories as set out below. The categories cover an extended set of the University General Education Requirements, College of Engineering requirements, as well as Industrial and Systems Engineering core and Technical Electives requirements. The normal length of the program is 140 credits.

Industrial & Systems Engineering Math/Sciences Requirement (8 credits)

To satisfy the College of Engineering requirements, Industrial & Systems Engineering requires the following additional Math courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 212</td>
<td>Calculus III</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MATH 213</td>
<td>Probability and Statistics for Engineers</td>
<td>4 cr.</td>
</tr>
</tbody>
</table>

Industrial and Systems Engineering Core Requirement (55 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISYE 200</td>
<td>Engineering Economic Analysis</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ISYE 201</td>
<td>Introduction to Systems Engineering</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ISYE 251</td>
<td>Operations Research I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ISYE 271</td>
<td>Modern Methods of Manufacturing</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ISYE 311</td>
<td>Quality Control and Reliability</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ISYE 331</td>
<td>Stochastic Processes</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ISYE 341</td>
<td>Simulation Analysis & Design</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ISYE 351</td>
<td>Production, Operations, and Inventory Management</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ISYE 352</td>
<td>Lean Manufacturing</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ISYE 360</td>
<td>Human Factors and Safety Engineering</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ISYE 361</td>
<td>Data and Information Engineering</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ENGR 399</td>
<td>Internship</td>
<td>1 cr.</td>
</tr>
<tr>
<td>ISYE 430</td>
<td>Supply Chain and Logistics</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ISYE 451</td>
<td>Operations Research II</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ISYE 475</td>
<td>Facilities Planning and Warehousing</td>
<td>4 cr.</td>
</tr>
<tr>
<td>ISYE 497</td>
<td>Senior Design Project I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ISYE 498</td>
<td>Senior Design Project II</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>
Industrial and Systems Engineering Technical Course Electives (9 credits)
The following is a sample list of courses that will satisfy the technical electives in the Industrial and Systems Engineering Program. The student must select a total of 9 credits from this list. At most 3 credits of the technical electives may be at 300-level and at most 3 credits may be independent study. In addition, courses from the list below may be taken to satisfy the free electives requirement.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISYE 391</td>
<td>Independent Study I</td>
<td>1-3 cr.</td>
</tr>
<tr>
<td>ISYE 401</td>
<td>Advanced Systems Engineering</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ISYE 431</td>
<td>Forecasting and Time Series</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ISYE 432</td>
<td>Advanced Stochastic Processes</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ISYE 433</td>
<td>Advanced Statistics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ISYE 461</td>
<td>Design of Human-Integrated Systems</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ISYE 471</td>
<td>Advanced Supply Chain Logistics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ISYE 480</td>
<td>Financial Engineering</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ISYE 485</td>
<td>Stochastic Manufacturing and Service Systems</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ISYE 491</td>
<td>Independent Study II</td>
<td>1-3 cr.</td>
</tr>
<tr>
<td>ISYE 495</td>
<td>Special Topics in Industrial and Systems Engineering</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>

Typical sequence for a B.Sc. degree in Industrial and Systems Engineering

Year 1	ENGL 111 English Communication I	4 cr	ENGL 112 English Communication II	4 cr
	MATH 111 Calculus I	4 cr	MATH 112 Calculus II	4 cr
	CHEM 115 Introduction to General Chemistry for Engineers	4 cr	PHYS 121 University Physics I	4 cr
	ENGR 111 Engineering Design	4 cr	ENGR 112 Introduction to Computing	4 cr
Summer	HUMA XXX Humanities and Social Sciences	3 cr		
Year 2	MATH 211 Differential Equations and Linear Algebra	4 cr	ISYE 200 Engineering Economic Analysis	3 cr
	MATH 213 Probability & Statistics for Engineers	4 cr	MATH 212 Calculus III	4 cr
	PHYS 122 University Physics II	4 cr	ISYE 271 Modern Methods of Manufacturing	4 cr
	ISYE 201 Intro to Systems Engineering	3 cr	HUMA XXX Humanities and Social Sciences	3 cr
	BUSS 201 Fundamentals of Accounting and Finance	3 cr	ISYE 251 Operations Research I	3 cr
Summer	HUMA XXX Humanities and Social Sciences	3 cr		
Year 3	ISYE 331 Stochastic Processes	3 cr	HUMA XXX Humanities and Social Sciences	3 cr
	ISYE 311 Quality Control & Reliability	4 cr	Free Elective I	3 cr
	ISYE 361 Data and Information Engineering	3 cr	ISYE 341 Simulation Analysis and Design	4 cr
	ISYE 351 Production, Operations and Inventory Management	3 cr	ISYE 352 Lean Manufacturing	3 cr
	ENGR 311 Innovation and Entrepreneurship in Engineering Design	4 cr	ISYE 360 Human Factors and Safety Engineering	4 cr
DEPARTMENT OF MECHANICAL ENGINEERING

Introduction

Mechanical engineers utilize their knowledge and skills across a wide range of industries. They play a major role in the design and manufacture of the complex engineering systems. The demand for mechanical engineers in the UAE will expand as the amount of manufacturing and industrial activity within the UAE continues to grow. Mechanical devices ranging from automotive parts to power plants require mechanical engineers in the design, manufacturing and support processes, making them employable across multiple industries.

Bachelor of Science (B.Sc.) in Mechanical Engineering

The mechanical engineering program is designed to provide comprehensive engineering education for students interested in mechanics, thermo-fluids, manufacturing, and controls/automation. Complex mechanical systems involve structures, advanced materials, sensors, and thermo-fluid systems. Given KUSTAR’s mission, the students will be exposed to this core engineering discipline through the study and application of the principles of engineering to a broad range of systems, ranging from nano devices to large scale power plants. Laboratories and industry led projects allow graduates to be ready to create the next generation of ideas and products.

Program Objectives

> Graduates will meet the expectations of employers of Mechanical engineers.
> Qualified graduates will pursue advanced study if they so desire.

Student Outcomes

Students graduating from the Department of Mechanical Engineering degree program will have the following abilities:

(a)	An ability to apply knowledge of mathematics, science, and engineering.
(b)	An ability to design and conduct experiments, as well as to analyze and interpret data.
(c)	An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
(d)	An ability to function on multi-disciplinary teams.
(e)	An ability to identify, formulate, and solve engineering problems.
(f)	An understanding of professional and ethical responsibility.
(g)	An ability to communicate effectively.
Program Structure and Requirements

To be recommended for the degree of B.Sc. in Mechanical Engineering, students must satisfactorily complete the courses in the specified categories as set out below. The categories cover an extended set of the University General Education Requirements, College of Engineering requirements, as well as the Mechanical Engineering core and Technical Electives requirements. The normal length of the program is 140 credits.

Mechanical Engineering Math/Sciences Requirement (8 credits)

To satisfy the College of Engineering requirements, Mechanical Engineering requires the following additional Math courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 212</td>
<td>Calculus III</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MATH 213</td>
<td>Probability and Statistics for Engineers</td>
<td>4 cr.</td>
</tr>
</tbody>
</table>

Mechanical Engineering Core Requirement (55 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 180</td>
<td>Computer Aided Design</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ENGR 200</td>
<td>Statics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 201</td>
<td>Engineering Dynamics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 225</td>
<td>Mechanics of Solids</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MECH 240</td>
<td>Thermodynamics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 270</td>
<td>Design for Manufacturability</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MECH 325</td>
<td>Engineering Materials</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MECH 335</td>
<td>Fluid Mechanics</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MECH 350</td>
<td>Dynamic Systems and Vibration</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 356</td>
<td>Mechatronics</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MECH 384</td>
<td>Control of Mechanical Systems</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 387</td>
<td>Machine Element Design</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ENGR 399</td>
<td>Engineering Internship</td>
<td>1 cr.</td>
</tr>
<tr>
<td>MECH 443</td>
<td>Heat and Mass Transfer</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MECH 486</td>
<td>Sustainable Energy</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 497</td>
<td>Senior Design Project I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 498</td>
<td>Senior Design Project II</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>
Mechanical Engineering Technical Electives (9 credits)

The following is a sample list of courses that will satisfy the technical electives in the Mechanical Engineering Program. The student must select a total of 9 credits from this list. At most 3 credits of the technical electives may be at 300-level and at most 3 credits may be independent study. In addition, courses from the list below may be taken to satisfy the free electives requirement.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO 426</td>
<td>Designing with Composites</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ENGR 455</td>
<td>Finite Element Analysis</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ENGR 465</td>
<td>Methods of Engineering Analysis</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 391</td>
<td>Independent Study I</td>
<td>1-3 cr.</td>
</tr>
<tr>
<td>MECH 405</td>
<td>Vibration Analysis</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 420</td>
<td>Materials: Strength and Fracture</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 421</td>
<td>Mechanics of Deformable Solids</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 422</td>
<td>Fatigue and Fracture Analysis</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 435</td>
<td>Fluid Machinery</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 441</td>
<td>Applied Thermodynamics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 445</td>
<td>Heating and Air Conditioning</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 446</td>
<td>Internal Combustion Engines</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 450</td>
<td>Vehicle Engineering</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 455</td>
<td>Robotics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 465</td>
<td>Bioengineering</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 485</td>
<td>Power Plant Systems Design</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MECH 491</td>
<td>Independent Study II</td>
<td>1-3 cr.</td>
</tr>
<tr>
<td>MECH 495</td>
<td>Special Topics in Mechanical Engineering</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>

Typical sequence for a B.Sc. degree in Mechanical Engineering

Year 1	ENGL 111 English Communication I	4 cr	ENGL 112 English Communication II	4 cr
	MATH 111 Calculus I	4 cr	MATH 112 Calculus II	4 cr
	CHEM 115 Introduction to General Chemistry for Engineers	4 cr	PHYS 121 University Physics I	4 cr
	ENGR 111 Engineering Design	4 cr	ENGR 112 Introduction to Computing	4 cr
Summer	HUMA XXX Humanities and Social Sciences	3 cr		

Year 2	MECH 180 Computer Aided Design	3 cr	HUMA XXX Humanities and Social Sciences	3 cr
	MATH 211 Differential Equations and Linear Algebra	4 cr	MATH 212 Calculus III	4 cr
	PHYS 122 University Physics II	4 cr	MECH 240 Thermodynamics	3 cr
	ENGR 200 Statics	3 cr	MECH 201 Engineering Dynamics	3 cr
	MECH 270 Design for Manufacturability	4 cr	MECH 225 Mechanics of Solids	4 cr
Summer Semester Classes

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 311</td>
<td>Innovation and Entrepreneurship in Engineering Design</td>
<td>4 cr</td>
</tr>
<tr>
<td>MECH 325</td>
<td>Engineering Materials</td>
<td>4 cr</td>
</tr>
<tr>
<td>MATH 213</td>
<td>Probability and Statistics for Engineers</td>
<td>4 cr</td>
</tr>
<tr>
<td>MECH 350</td>
<td>Dynamic Systems & Vibration</td>
<td>3 cr</td>
</tr>
<tr>
<td>MECH 384</td>
<td>Control of Mechanical Systems</td>
<td>3 cr</td>
</tr>
</tbody>
</table>

Year 3 Classes

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSS 301</td>
<td>Inside Organizations</td>
<td>3 cr</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>3 cr</td>
<td></td>
</tr>
<tr>
<td>MECH 497</td>
<td>Senior Design Project I</td>
<td>3 cr</td>
</tr>
<tr>
<td>HUMA XXX</td>
<td>Humanities and Social Sciences</td>
<td>3 cr</td>
</tr>
<tr>
<td>MECH 443</td>
<td>Heat and Mass Transfer</td>
<td>4 cr</td>
</tr>
</tbody>
</table>

Summer Semester Classes

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 399</td>
<td>Internship</td>
<td>1 cr</td>
</tr>
</tbody>
</table>

Year 4 Classes

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSS 301</td>
<td>Inside Organizations</td>
<td>3 cr</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>3 cr</td>
<td></td>
</tr>
<tr>
<td>MECH 497</td>
<td>Senior Design Project II</td>
<td>3 cr</td>
</tr>
<tr>
<td>HUMA XXX</td>
<td>Humanities and Social Sciences</td>
<td>3 cr</td>
</tr>
<tr>
<td>MECH 486</td>
<td>Sustainable Energy</td>
<td>3 cr</td>
</tr>
</tbody>
</table>

DEPARTMENT OF NUCLEAR ENGINEERING

The Department of Nuclear Engineering does not offer an undergraduate degree but students can choose the minor in nuclear engineering as a minor in any of the undergraduate degrees on offer. The minor in Nuclear Engineering is currently restricted to sponsored students from specific agencies. The student should check with registration office if they are eligible to enroll in this minor.

Minor in Nuclear Engineering

The Minor in Nuclear Engineering is designed to provide undergraduate students from other appropriate engineering programs (mechanical, electrical, chemical etc.) with the fundamentals of nuclear physics and engineering theory and practice, necessary to equip them with a sound understanding of the nuclear engineering that underpins a nuclear energy program.

The fundamental principle of nuclear power is to harness the energy released when a nuclear reaction results in the splitting of the Uranium atom, a process called nuclear fission, which also results in the creation of ionizing radiation. The courses designed for this Nuclear Engineering Minor will cover the following three fundamental nuclear engineering areas of study necessary to achieve the program goals and learning outcomes given below:

1. **NUCE 301 – Radiation Science and Health Physics.**
2. **NUCE 401 – Introduction to Nuclear Reactor Physics.**
3. **NUCE 402 – Introduction to Nuclear Systems and Operation.**

Goals

The goals of the program are:

1. To provide graduates with fundamental knowledge in nuclear engineering.
2. To enable graduates to relate nuclear engineering theory to practice.
3. To equip graduates with design and problem solving skills in nuclear engineering.
4. To prepare graduates for careers as nuclear engineering professionals.
5. To encourage graduates to pursue self-learning and personal development experiences.
Student Outcomes

A student graduating with a Minor in Nuclear Engineering will be able to:

a) Demonstrate a basic level of understanding in nuclear engineering.
b) Practice a sound level of nuclear safety awareness and culture.
c) Analyze and characterize existing nuclear engineering systems.
d) Design the basics of a nuclear engineering system, component, or process to meet desired needs.
e) Use the basic techniques, skills and modern tools necessary for nuclear engineering practice.
f) Conduct supervised investigation in the field of nuclear engineering with rigor and discrimination.
g) Communicate and write appropriately in the area of nuclear engineering.
h) Understand the basics of regulatory and ethical issues and professional responsibility related to nuclear engineering.
i) Realize the impact of nuclear engineering in a global and societal context.
j) Recognize the need for, and engage in, life-long learning.

Structure

Requirements

Students must take all five courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUCE 302</td>
<td>Applied Mathematics for Nuclear Engineering OR MATH 211</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Differential Equations and Linear Algebra</td>
<td>3 cr.</td>
</tr>
<tr>
<td>NUCE 303</td>
<td>Engineering Principles for Nuclear Engineering OR MECH 443</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td>Heat and Mass Transfer</td>
<td>3 cr.</td>
</tr>
<tr>
<td>NUCE 301</td>
<td>Radiation Science and Health Physics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>NUCE 401</td>
<td>Introduction to Nuclear Reactor Physics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>NUCE 402</td>
<td>Introduction to Nuclear Systems and Operation</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>

MINOR IN UAV

The College of Engineering is excited to announce a new multidisciplinary minor degree program in Unmanned Aerial Vehicles (UAV). Being high-tech intelligent machines capable of traveling by air, land or sea without a human crew on board, UAVs have recently gained increasing popularity and strategic significance worldwide. Powered with advanced computing technology, sensing capability and mechanical design, unmanned aerial vehicles are versatile machines able to maneuver in diverse, and dangerous environments. Equipped with sensors, a UAV could go into the heart of a storm or a spreading wildfire to monitor threats to human lives and property or travel through remote areas to gather environmental data.

The future development of UAV is an essential pillar to safety, security and sustainability, which are both highlights of the promising Abu Dhabi 2030 plan. The demanding need of expertise in this field requires highly educated individuals who understand the fundamentals of UAV in terms of design, engineering, operation and sensor data analysis. To this end, the objective of the interdisciplinary minor in UAV is to provide students with skills and experiences that will help them better apply the knowledge gained in their majors to specialized problems in the field of Unmanned Aerial Vehicles.

Goals

In this minor the students will design, construct and test UAV systems. The topics of this course include: platform design and construction, actuator and propulsion system design, sensing system design (based on inertial sensors, positioning system, vision, and etc.), auto-pilot system design and
performance tuning, ground control station development (data links, protocols, security, and etc.), and UAV operation and interfacing.

During the minor the students learn the theory and practice of the modelling and control of UAV systems. The topics include: the first-principles modelling and simulation of fixed-wing and rotorcraft UAVs, flight dynamics modelling via system identification, on-board flight control system design, and control performance tuning of the auto-pilot system. During the minor the students will learn advanced topics on navigation systems for UAVs based and advanced sensing. These topics include trajectory planning, path planning and obstacle avoidance (classical and reactive paradigms), and localization and mapping algorithms.

The UAV Minor is currently restricted to UAE Nationals. The students should check with the registration office if they are eligible to enrol in this minor.

Structure
Requirements

Students must take all six courses (Total 18 credits):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROBO 301</td>
<td>Dynamic and Control Systems OR (AERO/MECH 201 AND (AERO/MECH 350 OR ELCE 344)</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ROBO 302</td>
<td>Signals and Communications OR (ELCE 302 AND (CMPE 324 or CMME 300))</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ROBO 401</td>
<td>UAV Modeling and Control</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ROBO 402</td>
<td>UAV Sensing</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ROBO 403</td>
<td>UAV Navigation</td>
<td>3 cr.</td>
</tr>
<tr>
<td>ROBO 404</td>
<td>UAV Systems</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>

Restrictions

- **ROBO 301** SYSTEM DYNAMICS AND CONTROL (3-0-3)
 Students majoring in Aerospace and Mechanical Engineering are not allowed to take this course rather they have to take the combination AERO/MECH 201 AND (AERO/MECH 350 OR ELCE 344)

- **ROBO 302** SIGNALS AND COMMUNICATIONS (3-0-3)
 Students majoring in Electrical and Electronic, Communication, or Computer Engineering are not allowed to take this course rather they have to take the combination ELCE 302 AND (CMPE 324 or CMME 300)
Course Descriptions
Course Title, Code and Credit Value

Each course offered at the University has a unique code, a title and a credit value. The course code consists of four letters that reflect its discipline or field of study, followed by a three-digit number that indicates its level. The title of the course gives an indication of its content.
The credit value of the course has three numbers:

- The first one gives the number of lecture hours per week,
- The second shows the number of laboratory or problem solving hours per week,
- The third one gives the overall credit value of the course which will contribute to the particular degree requirements.

The example below further explains the course code and value information:

AERO 201 Engineering Dynamics (3-0-3)
(Cross listed with MECH 201; CIVE 201)
Prerequisite: ENGR 200
Review of kinematics and kinetics of particles: rectilinear and curvilinear motions; Newton's second law; energy and momentum methods. Kinematics and kinetics of rigid bodies: plane motion of rigid bodies; forces and accelerations; energy and momentum methods.

AERO 215 Introduction to Aerospace Engineering (2-3-3)
Prerequisite: ENGR 111
Review of kinematics and kinetics of particles: rectilinear and curvilinear motions; Newton's second law; energy and momentum methods. Kinematics and kinetics of rigid bodies: plane motion of rigid bodies; forces and accelerations; energy and momentum methods.

AERO 220 Aerospace Materials (3-0-3)
Prerequisite: PHYS 121
Materials (metals, alloys, polymers) in engineering service; relationship of inter-atomic bonding, crystal structure and defect structure (vacancies, dislocations) to material properties; polymers, ceramics, composites, phase diagrams and alloys; microstructure control (heat treatment) and mechanical properties; material failure; corrosion.

AERO 225 Mechanics of Solids (3-3-4)
(Cross listed with MECH 225)
Prerequisite: ENGR 200
The course is an introduction to the mechanics of deformable solids applied to basic engineering structures. It covers the concepts of stress and strain at a point; deformation of axial members; symmetric and unsymmetrical bending of elastic and elastic-perfectly plastic beams; torsion of open and closed section; beam deflection; stress and strain transformations, and elastic buckling of columns.

AERO 240 Thermodynamics (3-2-4)
Prerequisite: PHYS 121
Co-requisite: MATH 212
Introduction to the concept of energy and the laws governing the transfers and transformations of energy. Emphasis on thermodynamic properties of pure substance, the first law analysis of closed and open systems, the concept of entropy, and the second law of thermodynamics. Integration of these concepts into the analysis of basic power and refrigeration cycles.
AERO 321 Aerospace Structures (3-0-3)
Prerequisite: AERO 225 (AERO 320)
Basic concepts of the design/failure criteria for aerospace structures, advanced strength of materials
analysis of elastic structures, materials selection, structural assemblies, vibration and bending of
plates and beams and analysis of aircraft skin structures.

AERO 335 Aerodynamics I (3-3-4)
Prerequisites: MATH 212; AERO 215
Introduction to aerodynamics; conservation equations (integral and differential forms) for mass,
momentum, and energy; potential flow; irrotational versus rotational flow; airfoil and wing analysis;
boundary layers on plates and airfoils.

AERO 336 Aerodynamics II (3-0-3)
Prerequisites: AERO 240; AERO 335
Introduction to compressible flows. Compressibility effects on airfoil and wing aerodynamics. Normal
and Wind Tunnels. Subsonic Compressible Flow over Airfoils: Linear Theory, Linearized Supersonic

AERO 350 Dynamic Systems and Control (3-3-4)
Prerequisites: MATH 211; AERO 201, PHYS 122
Mathematical modeling of mechanical, electrical, and non-engineering systems; basic concepts in
dynamic systems analysis – equilibrium, stability, linearization; mechanical vibrations: free and forced
vibration of single degree of freedom systems, transient and steady state response, resonance, free
vibration of two degree of freedom systems; control systems: basics of feedback control, transfer
functions and block diagrams, design specifications based on step response, PID control, applications.

AERO 391 Independent Study I (Variable course credits from 1 to 3)
Prerequisite: Junior Standing and approval of the department
This course gives an undergraduate student the opportunity to participate in an individual or group
oriented project, study and/or research study under direction of a faculty member. A formal report is
required. Diagrams, design specifications based on step response, PID control, applications.

AERO 415 Aerospace Materials Manufacturing (3-0-3)
Prerequisites: AERO 225 (AERO 320); AERO 220
Aerospace materials and manufacturing; properties and processing of polymers, composites and
metal alloys. Analysis of selected manufacturing processes including injection molding, extrusion,
liquid composites molding, autoclave, out of autoclave, and metal manufacturing processes.
Discussions will be presented on important material properties that influence different manufacturing
processes.

AERO 425 Design of Aerospace Structures (3-0-3)
Prerequisite: AERO 321
This course provides the basics of the elements of aircraft structural analysis using an applications-
oriented approach. Topics to be covered include landing gear analysis, tapered wing beams, frame
cutouts, and composite materials.

AERO 430 Intermediate Aerodynamics (3-0-3)
Prerequisite: AERO 336
Fundamentals of the 1st and 2nd laws of thermodynamics applied to aerodynamic systems and control
volumes. Applications of gas dynamics to incompressible and compressible flows through nozzles,
diffusers, and airfoils. Isentropic flows to include Prandtl-Meyer expansions, and non-isentropic flows to
include normal and oblique shocks, and flows with simple friction and heat transfer.

AERO 431 Viscous Flows (3-0-3)
Prerequisite: AERO 336
Viscous incompressible fluid flows. Topics include derivation of equations governing viscous
compressible fluid motion; specializations to simple flows; boundary-layer theory; similarity solutions;
introduction to turbulence and Reynolds stresses.
AERO 433 Introduction to Computational Fluid Dynamics (2-3-3)
Prerequisite: AERO/MECH 335 (AERO/MECH 330)
The course provides the students with an introduction to the methods and analysis techniques used in computational solutions of fluid mechanics and aerodynamics problems. Model problems are used to study the interaction of physical processes and numerical techniques via computational fluid dynamics (CFD) software. The student will use the CFD techniques to solve some real world problems.

AERO 435 Rotorcraft Aerodynamics and Performance (3-0-3)
Prerequisite: AERO 335

AERO 440 Aerospace Propulsion (3-0-3)
Prerequisite: AERO 336
The mechanics and thermodynamics of aerospace propulsion systems including cycle analysis. Component analysis and operating principles of turbojet, turbofan, and other variations of air breathing aircraft propulsion units. Introduction to the operating principles of rocket and space propulsion units.

AERO 441 Introduction to Combustion (3-0-3)
Prerequisite: AERO/MECH 240 (AERO/MECH 340)
Introduction to fuel types and classification, gas phase mixtures, combustion process and combustion thermodynamics. Emphasis on chemical equilibrium, chemical kinetics, and modeling of reacting fluid mechanical systems. Integration of these tools into the understanding and analyzing detonation phenomenon and laminar premixed and non-premixed flames.

AERO 450 Flight Dynamics and Stability (3-0-3)
Prerequisites: AERO 335; AERO 350
Airplane motions and coordinate systems; lift and drag; pitching moment and static stability; steady cruise of the airplane; rigid body dynamics in six degrees of freedom; modeling of the six aerodynamic force and moment coefficients; longitudinal motion and stability; lateral motion and stability; motion control and autopilot design via eigenvalue placement; examples of longitudinal motion control.

AERO 461 Aviation Management and Certification (3-0-3)
Prerequisites: Senior standing and approval of the department
Product development, quality control. Strategic organizational analysis and design. Airworthiness, type certification and planning, delegation of authority, airplane flight manual. Aerospace system design and safety.

AERO 465 Space Dynamics and Control (2-3-3)
Prerequisite: AERO 350
Basic concepts of orbital mechanics with application to satellites: keplerian motion, orbital elements, orbital transfer and fundamentals of state space control. Basic concepts of spacecraft attitude dynamics: three-dimensional rigid-body kinematics, stability and dynamics of symmetric and tri-inertial bodies, disturbance effects and attitude determination and control.

AERO 470 Aircraft Design Laboratory
Prerequisites: AERO 225; AERO 335; AERO 350
Aircraft design principles blending synthesis, analysis and test. The iterative nature of the design process. Elements of aircraft performance calculation and optimization. Extensive, design oriented laboratory experiments performed by student teams. Focus is on student design and realization of experimental procedure, instrumentation, and data acquisition and analysis, with extensive laboratory reports.

AERO 485 Spacecraft Design (2-3-3)
Prerequisite: AERO 450
Types of spacecraft. Fundamentals of orbital mechanics. The design of spacecraft and spacecraft subsystems with emphasis on mission requirements and current design methods: spacecraft configuration, payload, structural, propulsion, attitude control, thermal, power, communication and other related subsystems. Spacecraft integration and testing.
AERO 491 Independent Study II (Variable course credits from 1 to 3)
Prerequisite: Senior Standing and approval of the department
This course gives an undergraduate student the opportunity to participate in an individual or group oriented project, study and/or research study under direction of a faculty member. A formal report is required.

AERO 495 Special Topics in Aerospace Engineering
Prerequisite: Topic specific
This course mainly deals with new trends in Aerospace Engineering and emerging technologies. Course is repeatable if title and content differ.

AERO 497 Senior Design Project I (1-3-2)
Prerequisite: Senior Standing or approval of department
Participation in team projects dealing with design and development of a product or a system. Number of project will be offered each year by the different departments, some of which will have a multi-disciplinary nature. This will be an opportunity to exercise initiative, engineering judgment, self-reliance and creativity, in a team environment similar to industry. The design projects require students to draw upon their engineering background, experience, and other pertinent resources. Oral and written presentations are required.

AERO 498 Senior Design Project II (0-6-2)
Prerequisite: AERO 497
Continuation of AERO 497

BMED BIOMEDICAL ENGINEERING

BMED 202 Biomedical Engineering Fundamentals (2-4-4)
Prerequisite: ENGR 111
Co-requisites: MATH 211, PHYS 12
Study the conservation laws of mass, energy, charge, and momentum as applied to problems in biomedical engineering.

BMED 211 Physiological Systems and Modeling I (2-4-4)
Prerequisite: ENGR 112
Co-requisites: BMED 202, MATH 211
The primary objective of this course is to study to introduce students to interface of medicine-engineering using mathematical modeling to describe homeostasis phenomena at the protein, cell and organ level. Besides introducing the basics in control and system science, concepts of model formulation, model validation, and simulation will be established. Chemical kinetic, transport equations and feedback systems will be the main focus in this course, and students will learn how they can be used to model the endocrine, kidney, and digestion systems.

BMED 212 Physiological Systems and Modeling II (2-4-4)
Prerequisite: BMED 211
The primary objective of this course is to apply the principles used in BMED 211 (Physiological Systems and Modeling I) to model the physiology of neuronal signaling, muscle, cardiovascular and respiratory systems. The course introduces these physiological systems, coupled with modeling techniques and mathematics of higher complexity. The models will be employed to relate to pathophysiology of the respective systems.

BMED 291 Independent Study I (Variable course credits from 1 to 4)
Prerequisites: Sophomore standing and approval of the department
This course gives an undergraduate student the opportunity to participate in an individual or group oriented project, study and/or research study under direction of a faculty member. A formal report is required.

BMED 321 Mechanics for Biomedical Engineers (2-4-4)
Prerequisites: BMED 202; MATH 211
This is an introductory course in engineering mechanics. The primary objective is to give students an understanding of the basic principles of statics (equilibrium), dynamics (kinematics and kinetics).
and strength of materials (stress, strain, mechanical properties) as applied to problems in biomedical engineering.

- **BMED 322** **Functional Biomechanics (2-4-4)**
 Prerequisites: BMED 212; BMED 321
 A study of the biomechanical principles underlying the kinetics and kinematics of normal and abnormal human motion. Emphasis is placed on the interaction between biomechanical and physiologic factors (bone, joint, connective tissue and muscle physiology and structure) in skeleto-motor function and the application of such in testing and practice in rehabilitation.

- **BMED 331** **Biotransport Phenomena (2-4-4)**
 Co-requisites: BMED 212; MATH 211
 The primary objective of this course is to study the fundamental principles of fluid, heat, and mass transfer with particular emphasis on physiological and biomedical systems. The course also explores the similarities between the fundamental principles of momentum, heat, and mass transfer and develops the mathematical description.

- **BMED 341** **Molecular and Cellular Physiology I (3-3-4)**
 Prerequisite: CHEM 211
 Co-requisite: BMED 212
 This course provides students with an advanced understanding of current topics and techniques in molecular biology, while developing skills in critical thinking and written expression. The goal of this course is to develop a comprehensive understanding of the basic fundamental concepts of molecular biology. This will be achieved both from the perspective of established molecular mechanisms for regulating the fundamental processes of a cell, and also from a technical laboratory-based applied perspective for using molecular biology as an experimental tool.

- **BMED 342** **Molecular and Cellular Physiology II (3-3-4)**
 Prerequisite: BMED 341
 The primary objective of this course is to emphasize the study of eukaryotic cell structure and function, including bioenergetics, membrane transport, cellular communication, flow of genetic information, immune responses and cell division. Experimental techniques used in understanding cell biology will be discussed along with the cellular basis of human disease.

- **BMED 351** **Biomedical Circuits and Signals (3-3-4)**
 Pre-requisites: PHYS 122, BMED 212
 The primary objective of this course is to study analogue, digital electronic circuits and their application to biomedical instrumentation and physiological measurements. The course will focus strongly on electronic hardware and software design issues required to produce medical instruments, which satisfy international standards for safety, performance and quality control. Students will be equipped with the fundamental knowledge required to design Biosignal processing system.

- **BMED 352** **Fundamentals of Biomedical Signal Processing (3-3-4)**
 Prerequisite: BMED 351
 The primary objective of this course is to study analogue and digital signal processing techniques and microcomputer system, and their application to biomedical instrumentation and physiological measurements. This course is designed for students who are expected to have prior knowledge in circuits and physiological system modeling. The main focus is on the technical aspects of biosignal processing and its hardware implementation in medical instruments.

- **BMED 391** **Independent Study II (Variable course credits from 1 to 4)**
 Prerequisite: Junior standing and approval of the department
 This course gives an undergraduate student the opportunity to participate in an individual or group oriented project, study and/or research study under direction of a faculty member. A formal report is required.

- **BMED 411** **Biomaterials (3-3-4)**
 Prerequisite: BMED 331
 Co-requisites: BMED 342; BMED 322; CHEM 311
 Introduction to the field of biomaterials used in the design of medical devices, and to augment
or replace soft and hard tissues. Discussion of bulk properties, applications, and in vivo behavior of different classes of natural and synthetic biomaterials. Analysis of biological response and biocompatibility, degradation and failure processes of implantable biomaterials/devices. This course involves a significant amount of hands-on work in order to perform detailed characterization of biomaterials and it revolves around two main projects.

BMED 412 Regenerative Medicine (3-3-4)
Prerequisite: BMED 331
Co-requisites: BMED 342; CHEM 311
The purpose of the course is to provide a basic grounding in the principles and practice of regenerative medicine, this course will cover basic molecular and developmental biology relevant to the understanding of differentiation and development at the molecular, cellular and organismal levels.

BMED 413 Application of Bio-molecular Tools (2-4-4)
Prerequisite: CHEM 211; BMED 341
This course will focus on delivery of the principles of genomics, genetic epidemiology and DNA-based marker assisted testing. It will reinforce the basic principles of these disciplines with emphasis on case studies from forensic science, health science, food science and conservation to deliver a course with an emphasis on developing a student’s practical and problem solving skills.

BMED 421 Physiological Control Systems (2-4-4)
Prerequisite: BMED 352
This course will expose students to the design of physiological control systems from engineering viewpoints. How states of “health” versus “disease” can be explained from the standpoint of physiological control system function (or dysfunction) will be studied.

BMED 422 Rehabilitation Engineering (2-4-4)
Prerequisite: BMED 322
Co-requisite: BMED 352
This is a project-based course that focuses via literature search and experimental work on the rehabilitative and neural aspects of biomedical engineering, including human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.

BMED 430 Bioinformatics (2-4-4)
Prerequisite: ENGR 112, MATH 211
This course aims to introduce future engineers to bioinformatics tools and analysis methods. Fundamental and current topics in bioinformatics, genomics and proteomics will be highlighted through lectures and literature reviews, that simultaneously develop critical thinking and oral presentations of students. Students will also familiarize themselves with the R project for statistical computing.

BMED 491 Independent Study III (Variable course credits from 1 to 4)
Prerequisite: Senior standing and approval of the department
This course gives an undergraduate student the opportunity to participate in an individual or group oriented project, study and/or research study under direction of a faculty member. A formal report is required.

BMED 495 Special Topics in Biomedical Engineering
Prerequisite: Topic Specific
This course mainly deals with new trends in Biomedical Engineering and emerging technologies. Course is repeatable if title and content differ.

BMED 497 Biomedical Engineering Senior Design I (1-9-4)
Prerequisite: Senior standing or approval of department
Participation in team projects dealing with design and development of a product or a system. Number of project will be offered each year by the different departments, some of which will have a multi-disciplinary nature. This will be an opportunity to exercise initiative, engineering judgment, self-reliance and creativity, in a team environment similar to industry. The design projects require students to draw upon their engineering background, experience, and other pertinent resources. Oral and written presentations are required.
BUSS BUSINESS STUDIES

BUSS 201 Fundamentals of Accounting and Finance (3-0-3)
Prerequisite: None
This course provides an introduction to financial and management accounting. It is aimed at providing a broad understanding of the theory and practice of financial accounting, management accounting and financial management, both for non-specialist students and as a foundation for further study in the area. This course examines the basic principles and underlying concepts and the ways in which accounting statements and financial information can be used to improve the quality of decision-making.

BUSS 301 Inside Organizations (3-0-3)
Prerequisite: Junior Standing
Increasingly, to maintain success in today’s hyper-competitive markets, firms depend less on advantages associated with economies of scale, technology, patents, and access to capital but more on innovation, speed, and adaptability. These latter sources of competitive advantage are largely derived from investments in a firm’s human capital. As such, much of an organization’s success will depend on leadership capacity, owners’ and line managers’ talents as caretakers of human capital. Therefore, this course will focus on Human Resources (HR) principles and practices underlying effective human capital management. It is designed to acquaint students with practices that will make them more effective in approaching people-related business issues; including the context (e.g., legal, organizational, leadership) in which these practices are conducted.

BUSS 395 Special Topics in Business Studies
Prerequisite: Topic Specific
Course is repeatable if title and content differ.

CHEM CHEMISTRY

CHEM 115 Introduction to General Chemistry for Engineers (3-2-1-4)
Prerequisite: None
This course introduces atomistic hypothesis of nature and Avogadro’s number, basic chemical reactions and their engineering applications, stoichiometry, atomic structure, periodic table properties, molecular geometry and applications, gas laws and gaseous, liquid, and solid states of matter, ionic and covalent bonding, descriptive chemistry of metallic and non-metallic elements with basic geometric ideas about structure, basic concepts in electrochemistry and thermochemistry, and basic chemistry of large molecules and polymers with overview of engineering applications.

CHEM 211 Organic Chemistry (3-3-4)
Prerequisite: CHEM 115
This course provides an introduction to naming, structure, bonding, reactivity, and properties of organic compounds such as alkanes, alkenes, alkynes, alkyl halides, aromatic compounds, alcohols, amines, and carbonyl compounds in the views of atomic and molecular orbital theories. These basic principles are applied to a variety of topics ranging from chemical reactions to biomolecules.

CHEM 311 Biochemistry (3-3-4)
Prerequisite: CHEM 211
The overall goal of this course is for the student to gain a basic working knowledge of biochemical concepts and techniques which will be necessary for future scientific endeavors.
CIVE CIVIL ENGINEERING

- **CIVE 180 Engineering Graphics and Visualization (3-0-3)**
 Prerequisite: ENGR 112
 This course is an introduction to graphical communication concepts and tools used by engineers. It covers visualization and technical sketching skills, implications related to manufacturing processes, computer-aided design methods, and development and interpretation of drawings of civil engineering structures.

- **CIVE 201 Engineering Dynamics (3-0-3)**
 (Cross listed with AERO 201; MECH 201)
 Prerequisite: ENGR 200
 Review of kinematics and kinetics of particles: rectilinear and curvilinear motions; Newton's second law; energy and momentum methods. Kinematics and kinetics of rigid bodies: plane motion of rigid bodies; forces and accelerations; energy and momentum methods.

- **CIVE 225 Mechanics of Solids (3-0-3)**
 Prerequisite: ENGR 200
 The course is an introduction to the mechanics of deformable solids applied to basic engineering structures. It covers the concepts of stress and strain at a point; deformation of axial members; symmetric and asymmetric bending of elastic and elastic-perfectly plastic beams; torsion of open and closed section; beam deflection; stress and strain transformations, and elastic buckling of columns.

- **CIVE 238 Geology for Civil Engineering (3-0-3)**
 Prerequisite: PHYS 121
 This course focuses on concepts of physical geology and the geologic processes relevant to civil and environmental engineering practices. Topics include: the nature and structure of earth, earth's history, formation of rocks, chemical and physical properties of minerals, and basic techniques for geologic field and site characterization. This course satisfies the requirement for a Science Elective for Civil Infrastructure and Environmental Engineering students.

- **CIVE 310 Geomatics (2-3-3)**
 Prerequisites: CIVE 180; MATH 112
 The course is an introduction to Geomatics. It covers Plane and topographic surveying; distance, angle, and elevation difference measurement; error theory; traverse computations; topographic mapping; horizontal and vertical curves; CADD applications; GPS and GIS.

- **CIVE 332 Fundamentals of Construction Engineering and Management (3-0-3)**
 Prerequisite: ENGR 111
 This course offers a sampler of the broad construction engineering and project management topics. It covers the project management tools and practices as performed throughout the construction processes, including bidding; contract format and construction administration; construction documents; reading and interpreting contract plans; project planning and scheduling; resource management and project control; cash flow analysis; risk management and safety in construction.

- **CIVE 335 Fluid Mechanics (3-3-4)**
 Prerequisites: PHYS 121; MATH 212
 This course introduces students to concepts of fluids and examines the forces on them. Conservation of mass, momentum, and energy are fundamental to the physics. Various mathematical representations are considered, including differential and integral formulations. The complexity of fluid dynamics motivates the notions of simplifying assumptions, dimensional analysis, and boundary layers among others.

- **CIVE 336 Civil Engineering Materials (3-3-4)**
 Prerequisites: CHEM 115; CIVE 225
 The course is an introduction to scientific concepts of civil engineering materials. It covers relationship between macroscopic material properties and response and microscopic properties; physical, mechanical, surface, fracture, and rheological properties of civil engineering materials including metals, composites, polymers, and Portland cement concrete.
CIVE 338 Geotechnical Engineering (3-3-4)
Prerequisite: CIVE 225
This course is an introduction to the basic principles that govern the behavior of soils, foundations, and other geotechnical engineering works. The central concepts to be covered in this class are: engineering properties of soils, soil classification, permeability, stresses in soil due to applied loads, consolidation, compaction, shear strength and applications to engineering design.

CIVE 340 Behavior and Analysis of Structures (3-0-3)
Prerequisite: CIVE 225
This course is to study behavior and analysis of statically determinate and indeterminate beams, frames, and trusses. It covers displacement calculations using the method of virtual work, analysis of statically indeterminate structures by consistent displacements and slope-deflection equations, and the basic fundamentals of using the direct stiffness method for analyzing structures.

CIVE 341 Design of Steel Structures (3-0-3)
Prerequisites: CIVE 336; CIVE 340
This course is to understand the fundamentals of structural steel design of structural members such as beams and columns and their connections based on the Load and Resistance Factor Design method. It covers design of structural members for tension, flexure, shear, compression, and combined loads, and design of bolted and welded connections.

CIVE 370 Introduction to Environmental Engineering (3-3-4)
Prerequisites: CHEM 115; MATH 112
This course introduces environmental problems and their resolutions including water and wastewater treatment, air pollution and control, and solid and hazardous waste management. It covers the fundamental theory, principles, and preliminary design of unit operations in environmental engineering. Laboratory classes illustrate analytical techniques used in the analysis of environmental samples, and demonstrate the mechanisms involved in the treatment processes.

CIVE 380 Transportation Engineering (2-3-3)
Prerequisite: CIVE 310
This course is an introduction to transportation engineering with specific emphasis on the planning, design, and operation of transportation facilities including highways, ramps, signal lights, pedestrian crossings, and stop signs. Factors that cause congestions are analyzed and solutions are discussed.

CIVE 391 Independent Study I (Variable course credits from 1 to 3)
Prerequisites: Junior Standing and approval of the department
This course gives an undergraduate student the opportunity to participate in an individual or group oriented project, study and/or research study under direction of a faculty member. A formal report is required.

CIVE 442 Design of Concrete Structures (3-0-3)
Prerequisites: CIVE 336; CIVE 340
This course is a basic understanding of the analysis and design of reinforced concrete structures. It covers properties of reinforced concrete, behavior and ultimate strength design of reinforced concrete beams, slabs, columns, and footings, and design for flexure, shear, compression, bond, and anchorage.

CIVE 450 Coastal Engineering (3-0-3)
Prerequisites: CIVE 335; CIVE 370
This course is designed to give an overview of the analysis and design procedures used in the field of coastal engineering. The course covers basic wave properties in the near shore region, coastal sediment transport processes and the preliminary design of shore and harbor protection structures.

CIVE 455 Blast Effects and Modern Protective Infrastructures (3-0-3)
Prerequisites: CIVE 341; CIVE 342
CIVE 463 Water and Wastewater Treatment Technologies (3-0-3)
Prerequisites: CIVE 335; CIVE 370
Design of unit operations for coagulation, sedimentation, filtration and disinfection for treatment of drinking water. Introduce the chemistry of drinking water treatment processes. Design of facilities for physical, chemical, and biological treatment of wastewater; and treatment and disposal of sludge. Coverage of advanced wastewater treatment and land treatment systems.

CIVE 465 Ground and Surface Water Hydrology and Contaminated Transport (3-0-3)
Prerequisites: CIVE 335; CIVE 370
A comprehensive introduction to groundwater and surface water hydrology. Contaminant transport of hazardous chemicals, environmental regulations, groundwater flow, well hydraulics, transport of contaminants in the subsurface environment, hydrologic cycle, surface water hydrology, hydrographs, rational method for storm water runoff, and storm water collection system design.

CIVE 469 Air Pollution (3-0-3)
Prerequisites: CHEM 115; CIVE/MECH 335
An in-depth instruction into air pollution covering such topics as the causes, sources, and effects of air pollution. Topics include: legislative standards (ambient and source) for pollutants, regional and global air pollution issues, indoor air pollution, air pollution instrumentation and gas flow measurements, basic meteorology, and design of facilities for air pollution control.

CIVE 470 Foundation Engineering (3-3-4)
Prerequisite: CIVE 338
This course focuses on geotechnical design of shallow and deep foundations, including spread footings, mats, driven piles, and drilled piers. Coverage includes bearing capacity, settlement, and group effects of the various foundation types. Additional topics include geotechnical proposal and report writing, subsurface exploration, and construction of deep foundations.

CIVE 472 Pavement Design and Transportation (3-0-3)
Prerequisites: CIVE 338; CIVE 380
Fundamental theory and design principles of both flexible and rigid pavements. Theory and practice in transportation systems to include airfield and highway design, traffic analyses, horizontal and vertical roadway alignment, pavement evaluation and maintenance, strengthening techniques, and repair.

CIVE 473 Structural Building Design (3-0-3)
Prerequisites: CIVE 341; CIVE 342

CIVE 475 Earth Structures: Embankment, Slopes and Buried Structures (3-0-3)
Prerequisites: CIVE 338; CIVE 342
Analyses of lateral earth pressures, slope stability, and stresses on buried structures, design of cantilever retaining walls, mechanically stabilized earth walls, sheet piling, and slurry walls.

CIVE 480 Project Management and Contract Administration (3-0-3)
Prerequisite: CIVE 332
Students take an owner’s project requirements through stages of scope definition, budgeting and planning, conceptual design, scheduling, and construction contract administration. Students apply engineering standards and consider realistic issues including engineering economics, constructability, environmental requirements, sustainability, and safety. The course addresses and applies management topics and concepts of planning, organizing, leading, and controlling in the context of a capstone engineering project. The course concludes with a project competition involving construction industry professionals.

CIVE 482 Project Control and Life Cycle Execution of Constructed Facilities (3-0-3)
Prerequisite: CIVE 332
This course continues an introduction to construction management and engineering concepts for future engineers, contractors and owner representatives involved at different stages in the life-cycle of constructed facilities. This course introduces further awareness of analytical tools and extends the basic foundation for advanced topics in construction engineering and management.
CIVE 484 Project Planning, Scheduling and Control (3-0-3)
Prerequisite: CIVE 332
This course emphasizes the fundamental principles of modern management methods of planning and scheduling for construction projects. Covered topics include pre-bid planning; construction project planning using WBS; project network; estimating activity duration, CPM scheduling; resource management using resource allocation and leveling; project time-cost trade-offs; project monitoring and control; and, earned value analysis integrating cost and schedule.

CIVE 485 Construction Project Management (3-0-3)
Prerequisite: CIVE 480
This course emphasizes the methods and materials of construction as well as the management practices required to run a successful construction project. Topics include construction materials, project planning, scheduling, cost estimating, and field engineering. A semester project, in the form of a detailed study of a major construction project, complements the classroom experience.

CIVE 488 Advanced Construction Management (3-0-3)
Prerequisite: CIVE 485
This course will cover construction methods, equipment, and cost estimation of construction materials, excavation, foundation, retaining walls, formwork, pavements and other aspects of civil engineering construction projects by integrating geotechnical reports, materials specifications, quality control, equipment, estimation, scheduling, and design details.

CIVE 491 Independent Study II (Variable course credits from 1 to 3)
Prerequisite: Senior Standing and approval of the department
This course gives an undergraduate student the opportunity to participate in an individual or group oriented project, study and/or research study under direction of a faculty member. A formal report is required.

CIVE 492 Urban Transit Planning and Operations (3-0-3)
Prerequisite: CIVE 380
The objective of this course is to introduce the fundamentals of urban transit planning and operations. The course will cover several topics, including public transit planning, role of transit in urban areas, classification of transit modes, fundamentals of transit performance and operational analysis, capacity analysis, scheduling, network design, transit economics, and mode selection.

CIVE 493 Airport Planning and Traffic Management (3-0-3)
Prerequisite: CIVE 380
This course introduces students to the fundamentals of airport systems, airport operations, and airport administrative management. The course topics includes the history of airport systems, planning, operations of airfields, airspace and traffic management, terminals and ground access, security, economic perspectives, and capacity/delay analyses.

CIVE 495 Special Topics in Civil Engineering
Prerequisite: Topic specific
This course mainly deals with new trends in Civil Engineering and emerging technologies. Course is repeatable if title and content differ.

CIVE 497 Senior Design Project I (1-3-2)
Prerequisite: Senior standing or approval of department
Participation in team projects dealing with design and development of a product or a system. Number of project will be offered each year by the different departments, some of which will have a multi-disciplinary nature. This will be an opportunity to exercise initiative, engineering judgment, self-reliance and creativity, in a team environment similar to industry. The design projects require students to draw upon their engineering background, experience, and other pertinent resources. Oral and written presentations are required.

CIVE 498 Senior Design Project II (0-6-2)
Prerequisite: CIVE 497
Continuation of CIVE 497.
CMME 200 Principles of Telecommunications (3-0-3)
Co-requisites: MATH 312; ELCE 214

CMME 300 Communication Systems (3-3-4)
Prerequisite: MATH 312
Co-requisite: ELCE 302

CMME 302 Digital Communications I (2-3-3)
Prerequisite: CMME 300
Waveform Coding: PCM, DPCM and DM. Baseband Digital Signals: NRZ and RZ signals and line coding, baseband pulse shaping for ISI-free transmission, eye diagrams and equalization. Band pass Digital Modulation: ASK, FSK, PSK and DPSK, power spectral densities, statistical decision theory and the optimum receiver for digital modulation schemes. Carrier and timing recovery.

CMME 304 Information Theory (3-0-3)
Prerequisites: CMME 300; MATH 311
History of information theory, Information measure, Entropy, Information rate, Memory less sources, Sources with memory, Information transmission on discrete channels (mutual information, discrete channel capacity), Continuous channel, Channel capacity, Shannon theory, Coding applications (Huffman coding), Fundamentals of statistical decision theory.

CMME 310 Applied Electromagnetics (3-0-3)
Prerequisites: PHYS 122; MATH 211
Time-varying fields and Maxwell’s equations, Wave equation and its solution, Plane waves in lossless media. Flow of electromagnetic power, Plane waves in conducting media, Reflection and refraction at a planar interface, Transmission line parameters and equations, Smith chart techniques, Impedance matching and transformation, Quarter-wave transformers, Single-stub tuners, Rectangular waveguides, Propagating and evanescent modes.

CMME 320 Communication Networks (3-0-3)
Prerequisite: CMME 300
Basic data and telecommunication networks, OSI Model, Network configuration, Circuit switching, packet switching, Basic switch design, Space and time division switching, Traffic fundamentals, Erlang capacity, Basic traffic models, Signaling systems, SS7 standard, Multiplexing, FDM, TDM, CDM, WDM, Medium access control, Framing and digital carrier systems, SDH, ATM protocols and standards, ISDN, xDSL, IP based networks, MPLS technology.

CMME 391 Independent Study I (Variable course credits from 1 to 3)
Prerequisite: Junior standing and approval of the department
This course gives an undergraduate student the opportunity to participate in an individual or group oriented project, study and/or research study under direction of a faculty member. A formal report is required.

CMME 400 Wireless Communications (3-0-3)
Prerequisites: CMME 302 or CMPE 324
Introduction to modern wireless communications, Cellular communication fundamentals, Cellular design concepts, Interference and capacity, Trunking and traffic models, Air interface, Propagation
models and mechanisms, Modulation, Coding, Multiple access techniques, Large/small scale fading, Diversity techniques, Wireless network structure and management, Standard wireless security protocols and mechanisms, Next generation wireless communication systems standards. Common wireless data network standards, Wireless applications.

CMME 401 Digital Communications II (3-0-3)
Prerequisites: CMME 302 or CMPE 324
Introduction to 2G and 3G wireless communications, Communication Channel Models: AWGN, multipath fading, delay spread, Doppler spread, impulsive noise, MIMO channels, colored noise. Equalization Methods: decision feedback equalization, linear and non-linear equalization, Maximum likelihood sequence estimator, minimum-mean-square error methods, adaptive equalization, Spread Spectrum Techniques: CDMA, direct sequence and frequency hopping methods, OFDM, Smart Antenna Systems.

CMME 402 Modulation and Coding Techniques (3-0-3)
Prerequisite: CMME 302 or CMPE 324
Advanced Modulation Techniques: M-ary orthogonal and non-orthogonal signals with coherent and non-coherent detection. Design Trade-Offs: The bandwidth efficiency plane, the error probability planes. Advanced Channel Coding Techniques: Cyclic and convolution codes, Interleaving, Turbo codes, Puncturing, block and trellis coded modulation, space-time coding.

CMME 441 Satellite Communications (3-0-3)
Prerequisite: CMME 300 or CMPE 324
Overview of Satellite Services, Orbital Mechanics, transmission losses, the link budget power equation, system noise, carrier to noise ratio, the uplink, the downlink, the combined uplink and downlink carrier to noise, possible modes of interference, interference between the different satellite circuits, Satellite Access Techniques, Direct Broadcast Satellite Services, VSAT.

CMME 491 Independent Study II (Variable course credits from 1 to 3)
Prerequisite: Senior standing and approval of the department
This course gives an undergraduate student the opportunity to participate in an individual or group oriented project, study and/or research study under direction of a faculty member. A formal report is required.

CMME 410 Antennas and Propagation (3-0-3)
Prerequisite: CMME 310
Antenna fundamentals, Radiation from a short current dipole, far field approximation, Radiation pattern, and Radiation resistance. Radiation integral approach, dipole and monopole antennas, Image techniques, Antenna arrays, Broadside and end-fire arrays, Pattern multiplication, Pattern synthesis, Binomial and Chebyschev arrays, Aperture antennas, Fourier-transform method, Field equivalence principle, Sky-wave and space-wave propagation, line-of-sight microwave links.

CMME 412 Optical Communications (3-0-3)
Prerequisite: CMME 310
Elements of optical communication systems; Slab and multi-layer planar waveguides, Optical fibers, Step-index and graded-index fibers, Single-mode and multi-mode fibers, Fiber attenuation and dispersion, Optical sources and transmitters, Light-emitting diodes, Semiconductor laser diodes, Optical detectors and receivers, Photodiodes, Optical system design, Types of noises and system impairments, Power budget, Power penalty; Dispersion compensation.

CMME 431 Broadband Telecommunications (3-0-3)
Prerequisite: CMME 320 or CMPE 324
Traditional Cable Networks, Two way Hybrid Fiber/Coax Cable (HFC) Access Networks, Cable Modems, IP telephony, Competing Access Technologies, Optical Transmitters, Optical Receivers, Optical Amplifiers, Performance Analysis and Design of the Forward and Reverse Links, Cable Data Transport, SONET/SDH and RPR Systems.

CMME 495 Special Topics in Communication Engineering
Prerequisite: Topic specific
This course mainly deals with new trends in Communication Engineering and emerging technologies. Course is repeatable if title and content differ.
CMME 497 Senior Design Project I (1-6-3)
CMME 497 Senior standing and approval of department
Students will pursue an in-depth project of significance in communication engineering by going from concept to working prototype. Some of the proposed design projects may involve interaction with industry. The students normally work in teams under faculty supervision. The project fosters teamwork between group members and allows students to develop their project management, technical writing, and technical presentation skills. Formal interim and final reports and presentations are required from each group.

CMME 498 Senior Design Project II (0-9-3)
Prerequisite: CMME 497
Continuation of CMME 497.

CMPE COMPUTER ENGINEERING

CMPE 211 Object-Oriented Programming (2-3-3)
Prerequisite: ENGR112
Foundation of object oriented concepts and programming. Basic Object Oriented Programming (OOP) concepts: objects, classes, methods, parameter passing, information hiding, inheritance, exception handling and polymorphism. Java language elements and characteristics, including data types, operators, control structures, search and sort algorithms.

CMPE 212 Introduction to Software Engineering (3-0-3)
Prerequisite: CMPE 211
Introduction to Software Engineering; The Software Process; Project Management Concepts; Software Requirements Engineering Using Unified Modeling Language (UML) Use-Cases; System Models; Architectural Design; Object-Oriented Software Design; Testing and Maintenance; Emerging software development methods.

CMPE 221 Java and Network Programming (3-0-3)
Prerequisite: CMPE 211

CMPE 312 Operating Systems (3-0-3)
Prerequisite: CMPE 221
Historical perspective of operating systems. Operating system concepts, functions and structure. Processes, threads, process synchronization, interprocess communication, process scheduling. Memory management and virtual memory. Device management. File management.

CMPE 320 Data Structures and Algorithms (3-0-3)
Prerequisites: CMPE 211; MATH 311

CMPE 324 Computer Networks (3-3-4)
Prerequisite: CMPE 200
CMPE 391 Independent Study I (Variable course credits from 1 to 3)
Prerequisite: Junior standing and approval of the department
This course gives an undergraduate student the opportunity to participate in an individual or group oriented project, study and/or research study under direction of a faculty member. A formal report is required.

CMPE 402 Embedded Systems (3-0-3)
Prerequisite: ELCE 332
Introduce the main hardware and software elements of an embedded system. Fundamental concepts and design techniques of embedded systems. Architecture and programming of embedded processors. Basic services provided by real-time operating system ("RTOS") kernels. Design and development of multitasking code and application software. Interfacing, device drivers and input/output devices. Applications of embedded systems in consumer electronics, mobile, automotive, aerospace, digital control and other real time systems.

CMPE 411 Introduction to Human Computer Interfaces (3-0-3)
Prerequisite: CMPE 212
Human Factors of Interactive Software; HCI Theories Principles and Guidelines; HCI Design; Principles of user interface design, development, and programming; HCI Development Tools; Expert Reviews; Usability Testing; User interface evaluation; Web based user interfaces.

CMPE 412 Database Systems (2-2-3)
Prerequisite: CMPE 211
Introduction to the theory, design and implementation of database systems; Data models; Entity-relationship model; Relational model; SQL query language; Data integrity; Normalization; Storage access.

CMPE 413 Software Testing and Quality Assurance (3-0-3)
Prerequisite: CMPE 212
Overview of the maintenance and testing activities within the software life cycle; Software Maintenance: Major maintenance activities. Estimating maintenance costs and productivity; Quality Assurance: Examination of various quality/complexity metrics; Software validation planning; Software testing fundamentals including test plan creation and test case generation, black-box and white-box testing techniques, unit integration, validation and system testing, and object-oriented testing.

CMPE 415 Software Architecture & Design (3-0-3)
Prerequisite: CMPE 212
Introduction to design principles, notations and methodologies with focus on object-oriented. Introduction to software architecture (styles and view models). Representations of design and architecture (UML). Reconcile the models Domain partitioning; Structural and behavioral design descriptions and specifications; design patterns, design quality and assurance, coupling and cohesion measurements, design verification and documentation.

CMPE 422 Distributed Systems (3-0-3)
Prerequisite: CMPE 312; CMPE 324

CMPE 433 Computer Security (2-2-3)
Prerequisite: CMPE 312

CMPE 434 Network Security (3-0-3)
Prerequisite: CMPE 324 or CMME 320
Modern network security vulnerabilities, threats, and attacks. Penetration testing and network
CMPE 440 Cloud Infrastructure and Services (3-0-3)
Pre-requisite: CMPE 324; CMPE 312

CMPE 452 Artificial Intelligence (3-0-3)
Prerequisite: CMPE 320
This course covers the fundamental aspects of classic and modern Artificial Intelligence. Topics include: AI History, solving problems by searching, knowledge representation and reasoning techniques, agents, machine learning, evolutionary computation and fuzzy logic.

CMPE 456 Image Processing and Analysis (3-0-3)
Prerequisite: ELCE 302 or BMED 352

CMPE 491 Independent Study II (Variable course credits from 1 to 3)
Prerequisite: Senior standing and approval of the department
This course gives an undergraduate student the opportunity to participate in an individual or group oriented project, study and/or research study under direction of a faculty member. A formal report is required.

CMPE 495 Special Topics in Computer Engineering
Prerequisite: Topic specific
Selected topics in computer software, hardware, and networks. It mainly deals with new trends in computer engineering and emerging technologies. Course is repeatable if title and content differ.

CMPE 497 Senior Design Project I (1-6-3)
Prerequisite: Senior standing or approval of department
Participation in team projects dealing with design and development of a product or a system. Number of project will be offered each year by the different departments, some of which will have a multi-disciplinary nature. This will be an opportunity to exercise initiative, engineering judgment, self-reliance and creativity, in a team environment similar to industry. The design projects require students to draw upon their engineering background, experience, and other pertinent resources. Oral and written presentations are required.

CMPE 498 Senior Design Project II (0-9-3)
Prerequisite: CMPE 497
Continuation of CMPE 497.

ECON 120 Engineering Economics (3-0-3)
Prerequisites: MATH 112; ENGL 112
This course introduces microeconomic concepts and analysis and provides an overview of macroeconomic issues. Topics studied include: the nature and dimensions of competition, the concepts of demand and supply, theories of the firm and individual behavior, market structure, competition and monopoly, costs and incentives, wage determination, and employment, the determination of output, employment, unemployment, interest rates, and inflation. Monetary and fiscal policies are discussed.
ELCE 200 | Fundamentals of Electronic Systems (3-3-4)
Prerequisite: PHYS 122
Restrictions: Students majoring in Electrical and Electronic, Communication, or Computer Engineering are not allowed to take this course for credits.

This course introduces some of the fundamental concepts of electric and electrical circuits, linear analog electronic circuits and devices, and digital logic circuits. Topics covered include Voltage source, Current Source, Energy Sources, Electrical Motor and Generator basic principle, Ohm’s Law, KVL and KCL circuits. DC steady state analysis of Resistive, RC, RL, and RLC circuit, Basic circuit theory nodal, mesh and source transformation. Transient analysis of simple electric circuits RC, and RL and some application. Basic operation of semiconductor devices. Diode, BJT and its application. Description of Small signal amplifier circuits and operational amplifiers. Binary system and basic logic gates. Design of simple combinatorial and sequential logic circuits. Basic structure of a central processing unit and a microcomputer system.

ELCE 214 | Electric Circuits (3-3-4)
Prerequisites: MATH 211; PHYS 122

ELCE 222 | Introduction to Semiconductor Devices (4-0-4)
Prerequisites: MATH 211; PHYS 122

This course is designed to provide an introduction to the mechanisms of device operation. It introduces and explains terminology, models, properties, and concepts associated with semiconductor devices and offer insight into the internal workings of the “building-block” device structures such as the pn-junction diode, Schottky diode, BJT, and MOSFET.

ELCE 230 | Digital Logic Design (3-3-4)
Prerequisite: ENGR 112

Data representation in digital computers. Boolean algebra. Minimization and implementation of logic functions. Design of combinational circuits. Programmable devices, multiplexers, decoders, memory and tri-state devices. Basic ALU design. Elements of sequential circuits: latches, flip-flops and counters. Design of synchronous sequential machines. Introduction to CAD tools and hardware description languages. Laboratory experiments provide hands-on experience in the simulation, implementation and testing of combinational and sequential logic circuits.

ELCE 302 | Signal Processing (3-3-4)
Prerequisites: MATH 312; ELCE 214

Time/space-domain analysis of analog and discrete signals: basic signals, properties and operations. Time/space-domain analysis of signal processing systems: properties, block diagrams, differential/difference equations, LTI systems, impulse response, and convolution. Frequency analysis of signals: Fourier series and transform, sampling and reconstruction, Laplace transform and z-transform, other transforms. Frequency analysis of signal processing systems: frequency response (gain and phase), transfer function, z-transfer function, stability analysis, Bode and Nyquist plots. Fundamentals of filter design. Laboratory experiments covering various aspects of analog and digital signal processing supplement the course.

ELCE 322 | Electronic Circuits and Devices (3-3-4)
Prerequisite: ELCE 214

Introduction to semiconductors. Operation of pn-junction and its applications as rectifiers, clippers, and voltage regulators. Operation of bipolar junction transistors (BJT) and field effect transistors (FET). Small signal modeling of BJTs and FETS. Use of BJTs and FETS as single stage amplifiers. BJT, JFET and MOSFET differential and multistage amplifiers. Amplifier classification and Power amplifiers. Practical nonlinear operational amplifier circuits.
■ ELCE 332 Microprocessor Systems (3-3-4)
Prerequisites: ELCE 230; ENGR 112
Introduction to current microprocessor, microcontroller and microcomputer systems: basic components, memory map, organization and processor architecture. Hardware and software models of microprocessor and microcontroller systems. Processor instructions and assembly language programming. Exception handling: interrupts, traps and exception processing. Memory decoding, input/output interfaces and programming peripheral devices. Laboratory experiments provide hands-on experience in the use of cross-assemblers, C-programming, simulators and actual microprocessor/microcontroller hardware.

■ ELCE 340 Electromechanical Systems (3-3-4)
Prerequisites: ELCE 214; CMME 310
Introduction to the concepts of active, reactive, and apparent power. Fundamentals of mechanics, fundamental of mutual inductance, electric and magnetic circuits, ideal transformers, Phasor diagrams, magnetizing current and core loss, equivalent circuits of transformers, voltage regulation and efficiency of transformers, three-phase circuits. Mechanical energy conversion device, DC machines, three-phase induction machines, synchronous generators.

■ ELCE 344 Feedback Control Systems (3-3-4)
Prerequisite: ELCE 302

■ ELCE 391 Independent Study I (Variable course credits from 1 to 3)
Prerequisite: Junior standing and approval of the department
This course gives an undergraduate student the opportunity to participate in an individual or group oriented project, study and/or research study under direction of a faculty member. A formal report is required.

■ ELCE 421 Filter synthesis (3-0-3)
Prerequisite: ELCE 302

■ ELCE 424 Microwave Circuits and Devices (2-3-3)
Prerequisite: ELCE 322
Type of transmission lines suitable for low and high frequency applications. Components, connectors, attenuators, cavities, dielectric resonators, terminations, couplers, T-junction, isolators and impedance transformers. Signal amplification using Klystrons and traveling wave tubes. Microwave devices, diodes, bipolar and FET transistors. Operation of single and double balanced mixers.

■ ELCE 426 Instrumentations and Measurements (2-3-3)
Prerequisites: ELCE 302; ELCE 322
Measurements of L, C and R using bridge circuits. Z-, y-, abcd- and s-parameters. Microwave measuring equipments such as spectrum and network analyzers. Digital Measurement systems and data acquisitions. Logic analyzers. Types and descriptions of data acquisition systems. Performing advanced measurements using spectrum and network analyzers such as time domain reflectometer measurements, and noise measurements. Comparison of simulated and practical results.

■ ELCE 430 Digital Systems Design (3-0-3)
Prerequisite: ELCE 230
Design and analysis of practical modern digital systems. Simulation, synthesis, and FPGA-based implementation of digital systems using hardware description languages (HDLs). Design space of integer and floating-point arithmetic units. Power and performance-oriented design techniques and evaluation metrics.
ELCE 432 Embedded Systems Design & Applications (3-0-3)
Prerequisites: ELCE 332
Introduce the main hardware and software elements of an embedded system. Fundamental concepts and design techniques of embedded systems. Architecture and programming of embedded processors. Basic services provided by real-time operating system ("RTOS") kernels. Design and development of multitasking code and application software. Interfacing, device drivers and input/output devices. Applications of embedded systems in consumer electronics, mobile, automotive, aerospace, digital control and other real time systems.

ELCE 434 VLSI Systems Design (3-0-3)
Prerequisites: ELCE 322, ELCE 230

ELCE 436 Analog Integrated Circuits Design (3-0-3)
Prerequisite: ELCE 322

ELCE 461 Power System Analysis (3-0-3)
Prerequisite: ELCE 214, ELCE 340
Power system analysis is a concern not only for big generators and operators of the public electricity network. It is also the business of those who generate, transform and distribute their own power (for example, large sections of the petrochemical industry) and those who rely on efficiently transmitted power for transport of passengers and goods. The effective, efficient and reliable generation, transmission and distribution of electrical power at the most economic rates is thus basic to the success of any modern economy.

ELCE 463 Power Distribution and Smart Grid Systems (3-0-3)
Prerequisite: ELCE 340
Introduction to distribution systems, loads characterization, symmetrical components, series impedance of overhead lines, Introduction to underground cables, series and shunt impedance of underground cables, overhead and underground circuit models, voltage regulation, capacitors, Transformers, power flow analysis, short-circuit analysis and protection, distribution reliability, economics of power transmission, smart grid systems, smart sensing, computer control and communication, reliability and grid security.

ELCE 464 Power System Stability and Control (3-0-3)
Prerequisites: ELCE 340, ELCE 344
The course covers the basic concepts of power system stability; transient analysis, system dynamics, steady-state stability, nonlinear models of synchronous machines including turbines, loads, and different excitation systems. It introduces Park's transformation and the d-q two-axis modeling of synchronous machines, small-signal dynamic models, and transient stability using direct solution method. It also introduces power system stabilizers (PSS) for single-machine and multi-machine infinite bus systems, simulation of power system models with and without stabilizers, load-frequency control, bus voltage regulation, power factor correction, stability margin enhancement, and the effectiveness of power system stability on system power flow.

ELCE 465 High Voltage Engineering (3-0-3)
Prerequisite: ELCE 340
The course covers the basic concepts of electrical insulation requirements, over voltages in power system and protection methods. It includes over voltages in electrical systems, electrical breakdown in gases, solids and liquids, generates of high voltages and high currents, measurements of high voltages and currents, high voltage testing and insulation.

ELCE 466 Power Electronics (3-0-3)
Prerequisites: ELCE 322, ELCE 340
Operation of power semiconductor devices such as power diodes, IGBTs, MOSFETs, and thyristors;
Switching losses, snubber circuits, single/three phases, half/full wave, half/fully controlled converters with R, RL, and RLC loads, single-phase and three-phase inverters, continuous and discontinuous current operations, design of power converters circuits and their applications on electric drives motion control and power systems, PSpice simulator.

ELCE 491 Independent Study II (Variable course credits from 1 to 3)
Prerequisites: Senior standing and approval of the department
This course gives an undergraduate student the opportunity to participate in an individual or group oriented project, study and/or research study under direction of a faculty member. A formal report is required.

ELCE 495 Special Topics in Electronic Engineering
Prerequisite: Topic specific
This course mainly deals with new trends in Electronic Engineering and emerging technologies. Course is repeatable if title and content differ.

ELCE 497 Senior Design Project I (1-6-3)
Prerequisite: Senior standing or approval of department
Participation in team projects dealing with design and development of a product or a system. Number of project will be offered each year by the different departments, some of which will have a multi-disciplinary nature. This will be an opportunity to exercise initiative, engineering judgment, self-reliance and creativity, in a team environment similar to industry. The design projects require students to draw upon their engineering background, experience, and other pertinent resources. Oral and written presentations are required.

ELCE 498 Senior Design Project II (0-9-3)
Prerequisite: ELCE 497
Continuation of ELCE 497.

ENGL ENGLISH LANGUAGE

ENGL 111 English Communication I (4-0-4)
Prerequisite: IELTS Band-6 (or TOEFL IBT 79)
This is an academic writing course that introduces students to the conventions and practices of academic writing and critical thinking. Students will develop understanding of the writing process and will gain understanding of the relationship between good writing and the development of critical, analytical and interpretative reading skills.

ENGL 112 English Communication II (4-0-4)
Prerequisite: ENGL 111
This course focuses on the development of argumentative writing and further develops writing, reading and analytical skills developed in English 111. The course will develop the skills to produce effective persuasive writing. It provides extensive practice in the use and integration of sources.

ENGL 220 Technical Writing and Communication (3-0-3)
Prerequisite: ENGL 112
This course focuses on technical writing genres and style, and presentation techniques. Students will practice communicating technical information ethically for specialist, educated and general audiences using appropriate formats in order to achieve purposes such as informing, instructing and persuading. Oral presentation skills will enhance and develop technical skills covered in ENGL 112. Students will be required to prepare a range of reports and other business and technical genres for print and online media.

ENGR ENGINEERING

ENGR 111 Engineering Design (2-4-4)
Prerequisite: None
This course exposes freshman engineering students to the breadth of engineering disciplines and introduces them to the fundamentals of design thinking and the design process. Students will be
ENGR 112 Introduction to Computing (3-3-4)
Prerequisite: None
Introduction to computer systems: computer hardware components, operating system, compiling, debugging, libraries, linking. Programming based problem solving that includes program development lifecycle. Imperative programming: data types, conditional expressions and statements, repetitive structures, arithmetic and logic operators, functions, arrays, strings, pointers, structures, file I/O.

ENGR 200 Statics (3-0-3)
Prerequisite: PHYS 121
A vector treatment of force systems and their resultants: equilibrium of trusses, beams, frames, and machines, including internal forces and three-dimensional configurations, static friction, properties of areas, and distributed loads and hydrostatics.

ENGR 295 Special Topics in Engineering
Prerequisite: Sophomore Standing and Topic specific
This course mainly deals with new trends in Engineering and emerging technologies. Course is repeatable if title and content differ.

ENGR 311 Innovation and Entrepreneurship in Engineering Design (2-4-4)
Prerequisite: Junior Standing
This course introduces students to the principles and practice of innovation and entrepreneurship in engineering design, as well as the techniques that managers use to manage innovation effectively. The three main phases of innovation and entrepreneurship: identification, invention, implementation, are explored at length. The course uses a hands-on approach to engage students in the full process of innovation and entrepreneurship from needs finding and screening, to concept generation and selection, and to the development of viable business and financial strategies, plans and models. The emphasis of the course is on the development of innovative and competitive needs-based solutions for real world engineering problems.

ENGR 399 Engineering Internship (0-0-1)
Prerequisites: 75 credits by end of fall semester, of which, 15 credits earned in Major
Students are required to spend a minimum of 8 continuous weeks on an approved internship program. The internship provides students with practical, on-the-job experience which allows them to integrate theory with “real world” situations. It is academically supervised by a faculty member and professionally supervised by the company’s internship supervisor who provides feedback to the university about the student’s progress. A formal report, that documents the work undertaken during the internship period, must be submitted to the Department within the first two weeks of the semester following the internship. The report and the complete course activities are graded on Pass/Fail basis by a faculty member.

ENGR 440 Design Support Analysis (2-0-2)
Prerequisite: MATH 311
This course is designed to teach students the elements of product support and the analysis of design as related to the manufacturability, maintainability and supportability of aerospace products. The students will be expected to conduct a life cycle cost analysis and logistics plan for a design.

ENGR 455 Finite Element Analysis (2-3-3)
Prerequisite: MATH 211
Students learn the basic theory of finite element analysis (FEA) applied to stress analysis and design of mechanical components. Various applications using the ANSYS FEA software will illustrate this course and enable students to efficiently use FEA in mechanical design.

ENGR 465 Methods of Engineering Analysis (3-0-3)
Prerequisite: MATH 211
Selected topics from math analysis with engineering application. Topics include Vector calculus, ordinary differential equations, partial differential equations, and calculus of variations.
HUMA 101 Arabic Language (3-0-3)
Prerequisite: None
This course aims at developing the ability of students in acquiring skills and competencies in the Arabic language. For the most part, it will teach the students procedural techniques regarding the functional text structure either in Classical or in Standard Arabic. Therefore, focus will be on linking students with both their academic specialization and their Arab and Islamic environment. The ultimate objective is to develop the students’ communication skills using the Arabic language.

HUMA 102 Islamic Culture (3-0-3)
Prerequisite: None
This course is delivered in Arabic. The course aims at keeping the student in touch with their Islamic culture by taking them through the civilization established by prominent scholars and men. The students are expected to compare this culture with the existing ones. The course consists of a general review of Islam as a religion and an approach to life.

HUMA 105 Emirates Society (3-0-3)
Co-requisite: ENGL 111
This course focuses on basic knowledge related to the nature of the UAE society and its political, geographical, cultural, demographical and social aspects. It also studies the perspective view of the Emirates Society in highlighting the contemporary international changes.

HUMA 106 Gulf Region Economic and Social Outlook (3-0-3)
Co-requisite: ENGL 111
The course explores the economic structure and the social conditions of the Gulf region. It focuses on the economic and social factors governing the Gulf communities and the impact of these factors at the regional and the global levels.

HUMA 110 Middle East Studies (3-0-3)
Co-requisite: ENGL 111
The course defines the term Middle East geographically and politically. The course discusses the current and most important political, economic and social changes in the Middle East. The course covers the historical interaction between the Middle East and the neighboring civilizations.

HUMA 111 Islamic History (3-0-3)
Co-requisite: ENGL 111
The course provides a comprehensive overview of the Islamic history from the pre-Islamic to the contemporary Islamic World. The course focuses on major events that represent turning points in the history of the Islamic Nations. The course stresses the factors and reason that led to the rise and fall of Islamic regimes.

HUMA 112 Sciences in Islam (3-0-3)
Prerequisite: ENGL 111
The birth of science and innovation in the Islamic World; the contribution of scientists in different areas of science and technology like chemistry, astronomy, mathematics, physics, fine technology, building machines, how the Western civilization benefited from the Islamic civilization will be addressed.

HUMA 130 Introduction to Linguistics (3-0-3)
Prerequisite: ENGL 112
An introduction to the study of language as an object in the mind, as a phenomenon in society, and as a component of computer technology. The constituents of language (morphology, phonetics, syntax) will be examined as well as the role of language in society (sociolinguistics, register, written and spoken language, power) and the application of computers to linguistics (computational linguistics, corpora, computer languages as language). The course should provide a useful grounding for students whose degree involves the analysis and application of natural or invented languages.

HUMA 140 Introduction to Psychology (3-0-3)
Prerequisite: ENGL 111
An introduction to selected concepts, methods, and vocabulary of psychology. Focus of study will be
on the individual and the conditions that influence behavior. Topics that will be covered include: growth and development, learning and thinking, emotions and motivations, personality and assessment, maladjustment and mental health, groups and social interaction, and social influence and society.

HUMA 141 Introduction to Sociology (3-0-3)
Prerequisite: ENGL 111
An analysis of the social and cultural forces which govern human behavior. The principal topics include: social interaction and organization, socialization processes, primary groups including the family, collective behavior, population and the relationship between social life and the environment.

HUMA 142 Introduction to Science and Technology Studies (3-0-3)
Prerequisite: ENGL 111
This course will introduce students to major sociological and philosophical issues in the field of contemporary science and technology studies (STS). Topics to be addressed include the relationships between culture, society, scientific inquiry, and technological development. Special emphasis will be placed on the language, debates and controversies that shape real-world applications of science and technology.

HUMA 210 Introduction to Islamic Law (3-0-3)
Prerequisite: None
This course is delivered in Arabic. It explores classical and contemporary understandings of Islamic law, with an emphasis on Islamic legal methodology. It will begin with an analysis of the major schools of Islamic law and will then move to classical and contemporary understandings of how differences are resolved in Islamic law.

HUMA 211 Islamic and Modernity (3-0-3)
Prerequisite: ENGL 112
The study of the encounter between Islam and modernity, since the early nineteenth century when the Muslim world came face to face with a powerful West, until the present time. The focus will be on the intellectual and political components of modernity and their impact on Muslim culture and society.

HUMA 212 History of Modern Science (3-0-3)
Prerequisite: ENGL 112
This course offers a survey of the history of science from the beginnings of the Copernican Revolution in the Sixteenth Century to the beginnings of aviation and the origins of the Nuclear Age in the early Twentieth Century (1543-1904). Developments and innovation in science will be considered in relation to the biographies, and historical and social and cultural contexts of the key figures in the history of modern science.

HUMA 220 Public Speaking (3-0-3)
Prerequisite: ENGL 112
This course helps students to develop poise and confidence when doing speeches in front of an audience. Students will learn speaking and listening skills while learning the psychology of public speaking and how to improve their own public speaking abilities. They will both prepare their own speeches to present before an audience as well as observe and evaluate others speeches.

HUMA 295 Special Topics in Humanities and Social Sciences
Prerequisite: Topic specific
This course mainly deals with various trends in Humanities and Social Sciences. Course is repeatable if title and content differ.

ISYE INDUSTRIAL AND SYSTEMS ENGINEERING

ISYE 200 Engineering Economic Analysis (3-0-3)
Prerequisite: BUSS 201
This course will introduce economic analysis for the comparison of engineering alternatives to make
ISYE 201 Introduction to Systems Engineering (3-0-3)
Prerequisites: MATH 112; ENGR 112
This course provides an understanding of the processes and management practices associated with the systems engineering discipline, highlights how systems engineering principles can be applied to technical projects. Students will become familiar with common SE terms, standards, and procedures and acquire knowledge and skills necessary to engineer complex, multi-disciplinary systems.

ISYE 271 Modern Methods of Manufacturing (3-3-4)
Prerequisite: ENGR 112
This course introduces modern methods of manufacturing with emphasis on processes and techniques such as digital and additive manufacturing to address the interaction of design, materials, energy, and processing. Laboratory instruction and hands-on experience in machining, process planning, economic justification, and current manufacturing methodologies.

ISYE 311 Quality Control & Reliability (3-3-4)
Prerequisite: MATH 213
This course will introduce theory and methods of quality control, system level reliability and maintenance engineering. Topics covered include process capability indices, attributes and variables control charts, time weighted control charts (CUSUM and EWMA), process and improvement with design of experiments, hazard functions, life distributions, censoring, accelerated life testing, structure functions, reliability and maintenance systems, replacement theory.

ISYE 331 Stochastic Processes (3-0-3)
Prerequisite: MATH 211, MATH 213
To learn techniques for modeling stochastic systems, introduce methods for using stochastic models in solving engineering design problems. Analyze probability models that capture short and long term effects of randomness on the systems using a broad range of mathematical and computational tools. Applications such as inventory, reliability, queueing models, and service systems will be discussed.

ISYE 341 Simulation Modeling and Analysis (3-3-4)
Prerequisites: ENGR 112; MATH 213
Discrete event simulation methodology emphasizing the statistical basis for simulation modeling and analysis. Overview of computer languages and simulation design. Applications include a variety of industrial situations, including manufacturing and logistics simulations.

ISYE 351 Production, Operations and Inventory Management (3-0-3)
Prerequisite: MATH 213
This course introduces students to concepts of operations management in manufacturing and non-manufacturing sectors. The course analyzes the interrelationships among the component blocks of the system: forecasting, inventory models, aggregate planning, production scheduling, material and capacity planning, and operations scheduling. The course also includes an overview of integrated production planning and control including MRP II.

ISYE 352 Lean Manufacturing (3-3-4)
Prerequisite: ISYE 201; MATH 213
An introduction to human capabilities and their limitations in engineered systems to increase productivity and work safely. Topics include the range of human motions, senses, and cognitive abilities; the incorporation of the human element into system and product design; communicating critical information to human users; ergonomics and safety in workplace design; safety in workplace.

informed financial decisions. Topics include time value of money, present-worth analysis, annual equivalence analysis, rate-of-return analysis, and methods to address project uncertainty.
ISYE 361 Data and Information Engineering (3-0-3)
Prerequisite: ENGR 112
This course introduces data modeling and the design and implementation of databases to extract and represent information for various industry applications. Topics include relational models and normalization, entity-relationship models, manipulation of data using Structured Query Language, data visualization and analysis tools, and retrieving data from external sources such as ERP systems and data warehouses.

ISYE 391 Independent Study I (Variable course credits from 1 to 3)
Prerequisites: Junior standing and approval of the department
This course gives an undergraduate student the opportunity to participate in an individual or group oriented project, study and/or research study under direction of a faculty member. A formal report is required.

ISYE 401 Advanced Systems Engineering (3-0-3)
Prerequisite: ISYE 201
This course introduces advanced level to systems methodology, design, and management, an overview of systems engineering as a professional and intellectual discipline, and its relation to other disciplines, such as operations research, management science, and economics.

ISYE 422 Reliability (3-0-3)
Prerequisite: SYE 321
To understand and learn system level reliability and maintenance engineering, specific topics include hazard functions, life distributions, censoring, life tables, nonparametric and parametric estimation and inference, accelerated life testing, structure functions, reliability and maintenance systems, replacement theory.

ISYE 430 Supply Chain and Logistics (3-3-4)
Prerequisites: ISYE 251, ISYE 351
This course will introduce supply chain and logistics activities that support the physical supply of raw and semi-finished materials to a firm, the planning and control of operations, and the delivery of the products or services up to the final customers, with the objective of achieving a sustainable competitive advantage and optimizing the value of long-term performance of the firm and supply chain as a whole.

ISYE 431 Forecasting and Time Series (3-0-3)
Prerequisites: MATH 213; ISYE 211
The objective of this course is to teach the students how to model and forecast using time series data, and use standard econometric software, and what kinds of models are useful for that purpose. This course will provide students with hands-on experience in modeling and forecasting techniques.

ISYE 432 Advanced Stochastic Processes (3-0-3)
Prerequisite: ISYE 331
This course covers the analysis and modeling of stochastic processes. Topics include measure theoretic probability, martingales, renewal theory, elements of large deviations theory, Brownian motion, stochastic integration and Ito calculus and functional limit theorems. In addition, the course will go over some applications to finance engineering, insurance, queuing and inventory models.

ISYE 433 Advanced Statistics (3-0-3)
Prerequisite: MATH 213
This course introduces Advanced Inferential Statistics and the conceptual underpinnings of statistical methods and how to apply them to address more advanced problems. Topics covered includes design of experiments, nonparametric statistics, and Bayesian statistics. Learning how to effectively use data and use of statistics-oriented programming language such as R or SAS.

ISYE 441 Advanced Simulation (3-1-4)
Prerequisite: ISYE 341
This is an advanced level discrete event simulation course emphasizing the statistical basis for simulation modeling and analysis. Overview of simulation language design/implementation applied to various industrial situations. The primary simulation language covered in class would be ARENA.
ISYE 451 Operations Research II (3-0-3)
Prerequisite: ISYE 251
This course will introduce a variety of optimization problems with integer variables and constraints. Topics covered include assignment problems, transportation, transshipment problems, network flows problems, and IP algorithms such as Cutting Planes, Branch & Bound. Applications include the Knapsack Problem and the Traveling Salesman Problem. Appropriate Optimization software tools will be used to solve a variety of practical problems.

ISYE 461 Design of Human-Integrated Systems (3-0-3)
Prerequisites: MATH 213; CMPE 211
Introduction to the effective design of information technology to support human activity in the workplace. Topics include general cognitive systems engineering concepts and principles and specific concepts and principles of interface design, task analysis, prototyping, and empirical usability evaluation methods. Case studies and individual and group design projects help students apply the concepts and principles in domains such as service, management, manufacturing, transportation and control systems.

ISYE 475 Facilities Planning and Warehousing (3-3-4)
Prerequisites: ISYE 351
Design of facilities for the most efficient flow and storage of raw materials, work-in-process, and completed stock through a work place. Topics include facilities layout planning models, space-activity relationships, materials handling, storage, and warehousing in relation to trends toward reduced inventory, smaller lot sizes, and just-in-time production using current modeling and analysis tools.

ISYE 480 Financial Engineering (3-0-3)
Prerequisites: MATH 213; ISYE 251
This is an introductory course on financial engineering, technical difficulty of the subject is kept at a minimum, while the major ideas and concepts underlying modern financial engineering are explained and illustrated. Students will learn about the different types of interest, annuities, debt retirement methods, investing in stocks and bonds. The course covers the binomial model for stock prices, portfolio management, and an elementary introduction to continuous time models and the Black-Scholes formula.

ISYE 481 Procurement and Supply Management (3-0-3)
Prerequisite: ISYE 351
Procurement supplies the organization with a flow of materials and services that ensure continuity of supply by maintaining effective relationships with existing sources and by developing other sources of supply either as alternatives or to meet emerging or planned needs. Topics include sourcing strategies, outsourcing, pricing and total cost of ownership.

ISYE 485 Stochastic Manufacturing And Service Systems (3-0-3)
Prerequisite: ISYE 331
Models for describing stochastic movements of parts and material in manufacturing facilities, supply chains, inventory systems, and equipment maintenance networks. Analysis of congestion, delays, machine usage, line balancing, equipment availability, inventory ordering policies, and system crashes. Basics of Markov Chains and queuing theory.

ISYE 491 Independent Study II (Variable course credits from 1 to 3)
Prerequisites: Senior standing and approval of the department
This course gives an undergraduate student the opportunity to participate in an individual or group oriented project, study and/or research study under direction of a faculty member. A formal report is required.

ISYE 495 Special Topics in Industrial Engineering (3-0-3)
Prerequisites: Senior standing and approval of the department
This course gives an undergraduate student the opportunity to participate in an individual or group oriented project, study and/or research study under direction of a faculty member. A formal report is required.
ISYE 497 Senior Design Project (1-6-3)
Prerequisite: Senior Standing or approval of department
Participation in team projects dealing with design and development of a product or a system. Number of project will be offered each year by the different departments, some of which will have a multi-disciplinary nature. This will be an opportunity to exercise initiative, engineering judgment, self-reliance and creativity, in a team environment similar to industry. The design projects require students to draw upon their engineering background, experience, and other pertinent resources. Oral and written presentations are required.

ISYE 498 Senior Design Project II (0-9-3)
Prerequisite: ISYE 497
Continuation of ISYE 497.

KORA 101 Elementary Korean I (3-0-3)
Pre-requisite: None
This course is designed for those who have no prior knowledge of Korean. Students will study the language’s orthography, phonetics, grammar and vocabulary. It provides complete beginners of Korean with a solid foundation in all four language skills: reading, writing, speaking and listening. The course introduces simple communication in most essential daily life situations such as greetings, self-introduction, weather, shopping, time and appointments, past activities, and future plans.

KORA 102 Elementary Korean II
Prerequisite: KORA 101 or placement exam
This course is designed for students who have a basic knowledge of the Korean language. It provides a foundation that will enable students to improve and acquire language skills in listening, speaking, reading and writing. In addition, students will develop communication skills for routine tasks and situations.

MATH 111 Calculus I (4-0-4)
Prerequisite: MATH 002 or placement test
This course will introduce students to the theory and techniques of single variable differential and integral calculus. Applications of single variable differential calculus for modeling, and solving, real-world problems in science and engineering will also be included. Students will be expected to demonstrate an understanding of the underlying principles of the subject, in addition to being able to apply the techniques of calculus in a problem-solving context.

MATH 112 Calculus II (4-0-4)
Prerequisite: MATH 111
Calculus II is a second semester calculus course for students who have previously been introduced to the basic ideas of differential and integral calculus. Over the semester we will study the following topics: Applications and methods of integration, infinite sequences and series and the representation of functions by power series, conic sections, polar and parametric equations and curves, functions of two variables, partial derivatives, double integrals.

MATH 211 Differential Equations and Linear Algebra (4-0-4)
Prerequisites: MATH 112; ENGR 112
This course introduces ordinary differential equations with a focus on the solution techniques for first order equations, higher order homogeneous and nonhomogeneous linear equations with constant coefficients, linear and almost linear systems, and Laplace transforms. The course also covers basic topics of linear algebra, including linear systems, basic properties of matrices, vector spaces, and eigenvalues and eigenvectors.

MATH 212 Calculus III (4-0-4)
Prerequisite: MATH 112
This course considers the development of differential, integral and vector calculus for functions of
several variables. The course also includes the application of concepts from multivariable calculus to
the study of curves and surfaces in space, the study of vector fields, optimization, areas, volumes and
flux. The topics covered in this course are interesting, as well as important, with numerous scientific
and engineering applications.

■ MATH 213 Probability and Statistics for Engineers (4-0-4)
Prerequisite: MATH 112
The course introduces students to probability models and statistical methods for data analysis.
The course will cover introductory probability theory, several discrete and continuous probability
distributions, and different statistical inference methods such as point/interval estimation, hypothesis
testing and linear regression.

■ MATH 214 Mathematical and Statistical Software (3-0-3)
Prerequisites: ENGR 112; MATH 213
Co-requisite: MATH 211
This course provides students with an introduction to the two major software packages used in the
Applied Mathematics and Statistics program, and its concentrations. Students will receive significant
hands-on training in the use of MATLAB for mathematical applications, and R for statistical applications.

■ MATH 311 Probability and Statistics with Discrete Mathematics (4-0-4)
Prerequisite: MATH 112
An introduction to probability theory and statistics, with an emphasis on applications and problem
solving. Probability and statistics is an important foundation for computer engineering fields such as
artificial intelligence, data structures and algorithms, data communications and networking, and image
processing and analysis. This course also covers an introduction to elementary discrete mathematics for
computer engineering, emphasizing mathematical definitions and proofs as well as applicable methods.

■ MATH 312 Complex Variables with Applications (4-0-4)
Prerequisite: MATH 211
This course provides students with a sound knowledge of complex variables and complex integrals,
Laplace and Fourier transforms, Fourier integrals and series along with a brief introduction to
Boundary Value Problems (BVPs). After this course, students will be able to apply strong mathematical
tools to model, and solve, a wide range of the practical problems in engineering and technology.

■ MATH 313 Applied Engineering Mathematics (4-0-4)
Prerequisite: MATH 211
This course presents numerical and analytical methods to solve mathematical models in engineering
science, including algebraic equations, ordinary differential equations, and partial differential
equations. Applications will include wave motion and heat conduction. The course includes computer
based projects.

■ MATH 314 Real Analysis and Probability (4-0-4)
Prerequisites: MATH 211; MATH 212; MATH 213
This course provides students with an introduction to the fundamental concepts and theory
which underpin many of the applied mathematics and statistics courses that follow in the Applied
Mathematics and Statistics Program.

■ MATH 315 Advanced Linear Algebra (3-0-3)
Prerequisites: MATH 211
Survey of the mathematical structure of vector spaces and linear transformations within a scientific
and engineering context. Topics include: vector spaces, matrices, linear mappings, scalar products and
orthogonality; symmetric, Hermitian, and unitary operators, eigenvalues and eigenvector theorems,
diagonalization and the spectral theorem; applications including convex sets, separating hyper-planes,
Krien-Milman theorem.

■ MATH 316 Partial Differential Equations (3-0-3)
Prerequisites: MATH 314
The course introduces the modern theory of partial differential equations in both classical and
variational formulations. Students will have the opportunity to study some of the following topics:
Series solutions of ODEs, Legendre's and Bessel's ODEs, PDEs and their classifications, Well-
posedness, Green's functions and integral representations, Non-linear PDEs, Sobolev spaces and
related Theorems, Variational formulation of PDEs, Weak solutions and the Lax-Milgram formulation.
MATH 317 Nonparametric Statistics (3-0-3)
Prerequisites: MATH 214; MATH 314
The course provides an overview of modern nonparametric statistics and aims at familiarizing students with a wide range of ideas in this field. A combination of theoretical results and computational techniques will be presented with the clear goal of developing a thorough understanding of a number of useful methods for analyzing data.

MATH 318 Multivariate Statistics (3-0-3)
Prerequisites: MATH 211; MATH 212; MATH 214
This course provides a thorough introduction to multivariate statistical analysis methods. Particular emphasis will be placed on methods for analyzing categorical data. All methods will be illustrated with real data sets using the open-source software R.

MATH 319 Numerical Analysis I (3-0-3)
Prerequisites: MATH 211; MATH 214
A survey of numerical methods for scientific and engineering problems. Topics include numerical solution of linear and nonlinear algebraic equations, interpolation and least squares approximation, numerical integration and differentiation, eigenvalue problems, and an introduction to the numerical solution of ordinary differential equations. Emphasis is placed on efficient computational procedures including the use of library and student-written procedures using MATLAB.

MATH 399 Internship (0-0-1)
Prerequisite: Junior standing and approval of department
Students are required to spend a minimum of eight continuous weeks on an approved internship program. The internship provides students with practical, on-the-job experience which allows them to integrate theory with “real world” situations. It is academically supervised by a faculty member and professionally supervised by the company’s internship supervisor who provides feedback to the university about the student’s progress. A formal report, that documents the work undertaken during the internship period, must be submitted to the Department within the first two weeks of the semester following the internship. The report and the complete course activities are graded on a Pass/Fail basis by a faculty member.

MATH 411 Modern Algebra (3-0-3)
Prerequisite: MATH 315
This course provides students with a survey of properties of fundamental elements of modern algebra such as groups, rings, and fields and their applications to engineering. Topics include: sets and functions, fundamental theorems of groups, rings, and fields; homorphism theorems; Galois theory; applications to number theory and encryption, coding theory and error correcting codes.

MATH 412 Optimization (3-0-3)
Prerequisites: MATH 317; MATH 318
This course introduces the principal methods and algorithms for linear, nonlinear, and multi-objective optimization. Emphasis is on methodology and the underlying mathematical structures. Topics include the simplex method, convex optimization, optimality conditions for nonlinear optimization, interior point methods for convex optimization, Newton's method, duality theory, Lagrange multiplier theory, multi-objective decision making, goal programming, stochastic optimization, fuzzy optimization, and applications in finance and management.

MATH 413 Game Theory (3-0-3)
Prerequisite: MATH 315
Introduction to the mathematical theory of games and game theoretic analysis. Topics include: combinatorial and strategic games, Zermelo’s algorithm, strictly competitive games, minimax theorem; non-cooperative games and Nash equilibrium; games with mediated communication, repeated games and finite automata; common knowledge and incomplete information; applications in economics, biology, and political science.

MATH 414 Discrete Mathematics (3-0-3)
Prerequisite: MATH 315
MATH 415 Design of Experiments (3-0-3)
Prerequisites: MATH 317; MATH 318

MATH 416 Sample Survey Design and Analysis
Prerequisite: MATH 214
This course will focus on methodological issues regarding the design, implementation, analysis, and interpretation of surveys and questionnaires in variety of applied areas such as education, healthcare, social sciences, etc.

MATH 419 Numerical Analysis II (3-0-3)
Prerequisite: MATH 319

MATH 421 Econometrics (3-0-3)
Prerequisite: MATH 317; MATH 318
Fundamentals of statistical time series analysis and econometrics are presented and developed for models used in the modern analysis of financial data. Techniques are motivated by examples and developed in the context of financial applications.

MATH 422 Stochastic Differential Equations (3-0-3)
Prerequisite: MATH 314
Fundamentals of statistical time series analysis and econometrics are presented and developed for models used in the modern analysis of financial data. Techniques are motivated by examples and developed in the context of financial applications.

MATH 423 Financial Risk Analysis (3-0-3)
Prerequisite: MATH 412
This course aims to provide an overview of the main theoretical concepts underlying the analysis of financial risk and to show how these concepts can be implemented in practice in a variety of financial contexts. Additionally students will learn how to examine and manage risk and its impact on decisions and the potential outcomes.

MATH 424 Optimal Control Theory (3-0-3)
Prerequisite: MATH 412
This course aims to provide an overview of deterministic and stochastic control theory in both discrete and continuous time. We will apply the theory to relevant problems in finance and economics.

MATH 425 Financial Portfolio Management (3-0-3)
Prerequisite: MATH 412
This course concerns making sound financial decisions in an uncertain world. Increasingly, financial decision-makers are depending on optimization techniques to guide them in their decisions. Topics to be covered will include asset/liability management, option pricing and hedging, risk management, and portfolio selection. Optimization techniques to be covered will include linear and nonlinear programming, integer programming, dynamic programming, and stochastic programming.

MATH 431 Computational Methods in Biology (3-0-3)
Prerequisite: BMED 211
Co-prerequisite: MATH 419
This course presents an overview of important applications of computers to solve problems in biology. Major topics covered are computational molecular biology, modeling and simulation including computer models of population dynamics, biochemical kinetics, cell pathways, neuron behavior, and mutation and development of models of physiological systems using the compartmental framework. The final part of the course introduces techniques to analyze and interpret the “classical” models of theoretical ecology.
MATH 432 Mathematical Models in Biology (3-0-3)
Prerequisite: MATH 316; MATH 419; BMED 211
This course provides an introduction to the application of differential equations (ODEs and PDEs) to
develop mathematical models of real-world phenomena in the biological sciences. Topics will include
drug infusion, epidemics, chemical kinetics and enzymatic reactions, population growth and oxygen
diffusion in muscles.

MATH 433 Biostatistics (3-0-3)
Prerequisite: MATH 318; BMED 211
This course provides an introduction to Biostatistics. In particular, methods and concepts of statistical
analysis and sampling in the biological sciences are presented. A thorough coverage of Sequential
Analysis methods and Survival Analysis methods, and their applications in Biology, are included.

MATH 434 Bioinformatics (3-0-3)
Prerequisite: MATH 433; BMED 202
Principles of protein structure, techniques within the framework of basic shell scripting and web-
based bioinformatics databases/tools, principles of sequence alignment, automation/use of existing
applications for the analysis of large datasets.

MATH 435 Mathematical Imaging (3-0-3)
Prerequisite: MATH 412
Mathematical Imaging provides a comprehensive treatment of the mathematical techniques used
in imaging science. Students will become familiar with concepts such as image formation, image
representation, image enhancement, noise, blur, image degradation, edge detection, filtering,
de-noising, morphology, image transforms, image restoration, image segmentation, image quality
measure, fractal image coding, with applications to Bio-imaging and Medical Imaging.

MATH 450 Senior Project I (3-0-3)
Prerequisite: Successful completion of the first six semesters of the program
This is a two semester course in which students will conduct a research project under the close
supervision of one faculty member. Typically, this will be an individual research experience for the
student although small group projects, consisting of no more than two student members, may be
considered in exceptional circumstances. Students will present the results of their research in the
form of a written thesis and an oral presentation to faculty and students.

MATH 451 Senior Project II (3-0-3)
Prerequisite: MATH 450
Continuation of MATH 450.

MECH MECHANICAL ENGINEERING

MECH 180 Computer Aided Design (2-3-3)
Prerequisite: None
The course introduces students to key concepts, techniques and applications of a Computer Aided
Design (CAD) 3D Solid Modeling system. An introduction of visualization techniques in 2D and 3D,
including hand sketching, is followed by an exploration of the parametric solid modeling environment,
sketching and features.

MECH 201 Engineering Dynamics (3-0-3)
*(Cross listed with AERO 201; CIVE 201)
Prerequisite: ENGR 200
Review of kinematics and kinetics of particles: rectilinear and curvilinear motions; Newton’s second
law; energy and momentum methods. Kinematics and kinetics of rigid bodies: plane motion of rigid
bodies; forces and accelerations; energy and momentum methods.

MECH 225 Mechanics of Solids (3-3-4)
*(Cross listed with AERO 225)
Prerequisite: ENGR 200
The course is an introduction to the mechanics of deformable solids applied to basic engineering
MECH 240 Thermodynamics (3-0-3)
Prerequisite: PHYS 121
Co-requisite: MATH 212
Introduction to the concept of energy and the laws governing the transfers and transformations of energy. Emphasis on thermodynamic properties of pure substance, the first law analysis of closed and open systems, the concept of entropy, and the second law of thermodynamics. Integration of these concepts into the analysis of basic power and refrigeration cycles.

MECH 270 Design for Manufacturability (3-3-4)
Co-requisite: MECH 180
Introduction to DFM methodologies and tools; designing for primary manufacturing processes (cutting fundamentals, casting, forming, and shaping); plastics production processes and designing with plastics (snap-fits, integral hinges, etc.); ceramics and powder metal production; design for assembly (DFA); rapid prototyping, and computer integrated manufacturing (CIM).

MECH 325 Engineering Materials (3-3-4)
Prerequisites: CHEM 115; PHYS 121
Materials (metals, alloys, polymers) in engineering service; relationship of inter-atomic bonding, crystal structure and defect structure (vacancies, dislocations) to material properties; polymers, ceramics, composites, phase diagrams and alloys; microstructure control (heat treatment) and mechanical properties; material failure; corrosion.

MECH 335 Fluid Mechanics (3-3-4)
Prerequisite: PHYS 121, MATH 212
This course introduces students to concepts of fluids and examines the forces on them. Conservation of mass, momentum, and energy are fundamental to the physics. Various mathematical representations are considered, including differential and integral formulations. The complexity of fluid dynamics motivates the notions of simplifying assumptions, dimensional analysis, boundary layers, and shock waves, among others.

MECH 350 Dynamic Systems and Vibration (3-0-3)
Prerequisites: MATH 211; MECH 201, PHYS 122
Mathematical modeling of mechanical, electrical, hydraulic, electrical, and/or thermal systems; basic concepts in dynamic systems analysis – equilibrium, linearization; mechanical vibrations: free and forced vibration of single degree of freedom systems, transient and steady state response, resonance, free vibration of two degree of freedom systems; transfer functions and block diagrams, design specifications based on step response, applications.

MECH 356 Mechatronics (3-3-4)
Prerequisite: MECH 350

MECH 384 Control of Mechanical Systems (2-3-3)
Prerequisite: MECH 350
Introduction to the control of mechanical and vibrating systems. State space and transfer function representations. Control specifications and control system architectures. PID and alternative controller design. Root locus and frequency domain designs. Application examples.

MECH 387 Machine Element Design (2-3-3)
Prerequisites: MECH 225; MECH 270
Design and analysis of machinery for load bearing and power transmission. Consideration of material failure modes. Design and selection of machine elements: shafts, rolling element bearings, bolts, belts, and power transmissions such as gears.
131

- **MECH 391**
 Independent Study I (Variable course credits from 1 to 3)
 Prerequisite: Junior standing and approval of the department
 This course gives an undergraduate student the opportunity to participate in an individual or group oriented project, study and/or research study under direction of a faculty member. A formal report is required.

- **MECH 405**
 Vibration Analysis (3-0-3)
 Prerequisite: MECH 360

- **MECH 420**
 Materials: Strength and Fracture (3-0-3)
 Prerequisite: AERO/MECH 220
 The course is an introduction to the mechanics of fracture for engineering materials. It covers the analysis and prevention of failure in metals, polymers, ceramics and composites; plastic deformation and plastic collapse; initiation and propagation of cracks; environment-assisted cracking, and fatigue.

- **MECH 421**
 Mechanics of Deformable Solids (3-0-3)
 Prerequisites: MECH 225
 The course is an introduction to the theory of elasticity. It covers the concepts of deformation, stress and strain in a continuum; Formulation and solution strategy for boundary value problems in linear elasticity; Concepts of work and energy and the principle of virtual work; Problems in plane stress and plane strain in two-dimensional elasticity and solution using stress functions; Solutions to axial deformation, bending and torsion problems for elastic cylinders.

- **MECH 422**
 Fatigue and Fracture Analysis (3-0-3)
 Prerequisites: MECH 225; MECH 325
 Elastic and elasto-plastic fracture mechanics. Fatigue design methods, fatigue crack initiation and growth Paris law and strain-life methods. Fatigue testing, scatter, mean stress effects and notches. Welded and built up structures, real load histories and corrosion fatigue. Damage tolerant design and fracture control plans.

- **MECH 435**
 Fluid Machinery (3-0-3)
 Prerequisite: MECH 335
 The basic operating principles of fluid machinery and fluid power installations. Topics covered include: pipelines, centrifugal pumps and fans, hydraulic turbines, high pressure hydraulic systems and positive displacement pumps. Problem analysis emphasizes mechanical engineering applications.

- **MECH 441**
 Applied Thermodynamics (3-0-3)
 Prerequisite: MECH 240

- **MECH 443**
 Heat and Mass Transfer (3-3-4)
 Co-prerequisite: MECH 335

- **MECH 445**
 Heating and Air Conditioning (3-0-3)
 Prerequisite: MECH 240
MECH 446 Internal Combustion Engines (3-0-3)
Prerequisite: MECH 240
The basic operating principles of internal combustion engines. Topics covered include: engine thermodynamics, thermochemistry and fuels, engine fluid mechanics and heat transfer, pollutant emissions and engine tribology. Problem analysis emphasizes propulsion and power-generation applications in mechanical engineering.

MECH 450 Vehicle Engineering (3-0-3)
Prerequisites: MECH 386; MECH 350
The course emphasizes the engineering and design principles of road transport vehicles. Topics to be covered include: performance characteristics, handling behaviour and ride quality of road vehicles.

MECH 455 Robotics (3-0-3)
Prerequisites: MECH 356
This course is an introduction to kinematics, dynamics, and control of robot manipulators. Emphasis is placed on computer use in control of actual robots and in simulation of mathematical models of robots.

MECH 465 Bioengineering (3-0-3)
Prerequisite: MECH 225
Co-requisite: MECH 325
This is an introductory course to bioengineering. Basic mechanical description of the hierarchical structure of an organism: molecules, membranes, cells, tissues, skeleton, and locomotion, will be covered. Conservation of material, energy, charge and momentum in biological systems will also be covered.

MECH 485 Power Plant Systems Design (3-0-3)
Prerequisite: MECH 443
This course covers a detailed engineering analysis and design of a thermal power plant, including heat balance, selection of equipment (boiler, turbines, heat exchangers, pumps, cooling tower), performance evaluation, economic evaluation and feasibility studies.

MECH 486 Sustainable Energy (2-3-3)
Prerequisite: MECH 240
The course provides introductory coverage of energy production, conversion, distribution and storage systems for different sources of energy including fossil fuel; nuclear power; biomass energy; geothermal energy; hydropower; wind energy, and solar energy. Emphasis is placed on the sustainable use of energy in light of economic, environmental, and societal constraints.

MECH 491 Independent Study II (Variable course credits from 1 to 3)
Prerequisites: Senior standing and approval of the department
This course gives an undergraduate student the opportunity to participate in an individual or group oriented project, study and/or research study under direction of a faculty member. A formal report is required.

MECH 497 Senior Design Project I (1-6-3)
Prerequisites: MECH 325; MECH 384; MECH 387
Participation in team projects dealing with design and development of a product or a system. Number of project will be offered each year by the different departments, some of which will have a multi-disciplinary nature. This will be an opportunity to exercise initiative, engineering judgment, self-reliance and creativity, in a team environment similar to industry. The design projects require students to draw upon their engineering background, experience, and other pertinent resources. Oral and written presentations are required.

MECH 498 Senior Design Project II (0-9-3)
Prerequisite: MECH 497
Continuation of 497

NUCE NUCLEAR ENGINEERING

NUCE 301 Radiation Science and Health Physics (3-0-3)
Prerequisites: PHYS 122; MATH 211 (or NUCE 302)
This course provides students with an understanding of radiation science, including radiation
NUCE 302 Applied Mathematics for Nuclear Engineering (3-0-3)
Prerequisites: MATH 112 or equivalent
This course recaps some of the undergraduate mathematics materials relevant to the advanced graduate courses. Furthermore, basic introductory material for the numerical analysis will be also provided to the students.

NUCE 303 Mechanics & Thermal-hydraulics Principles for Nuclear Engineering (3-0-3)
Prerequisites: PHYS 121 or equivalent
This course provides students with a thorough understanding in mechanics of materials and thermal hydraulics related topics and concepts. The specific subjects are selected on the basis of their relevance and applicability to nuclear engineering technology.

NUCE 401 Introduction to Nuclear Reactor Physics (3-0-3)
Co-requisite: NUCE 301
This course provides the students with the basic understanding of nuclear reactor physics. It also provides students with the fundamental principles and practical applications related to the utilization of nuclear energy from fission. It covers the concepts of neutron diffusion in one-group and multi-group contexts. It also gives a brief introduction to the subject of time-dependent nuclear reactor.

NUCE 402 Introduction to Nuclear Systems and Operation (3-0-3)
Prerequisites: MECH 443; NUCE 401
This course provides students with an overview of nuclear systems and power plants, including operation steps, energy transport schemes, various power reactor types, safety principles, and control functions, as a foundation to understanding the theoretical and practical aspects of nuclear plant design and operation and a working knowledge of various safety features.
ROBO 301 System Dynamics and Control (3-0-3)
Prerequisite: MATH 211
Restrictions: Students majoring in Aerospace and Mechanical Engineering are not allowed to take this course.
The contents include both dynamic modelling of mechanical and electromechanical systems, different
types of controller designs and their practical applications. Review of kinematics and kinetics of
particles; Kinematics and kinetics of plane motion of rigid bodies; Principles of feedback; Time domain
specifications and stability analysis; PID controller design and PID tuning; Root Locus method.

ROBO 302 Signals and Communications (3-0-3)
Prerequisite: MATH 211
Restrictions: Students majoring in Electrical and Electronic, Communication, or Computer
Engineering are not allowed to take this course.
Complex numbers and functions, conformal mapping, analytic functions, elements of residue theory,
Fourier and Laplace transform and its properties and linear time invariant systems. Introduction to
data and computer communications, fundamentals of computer networks theory, design, protocols,
analysis and operation, OSI model, data transmissions and transmission media, local and wide area
networks and IP networks, computer networks and their protocols.

ROBO 401 UAV Modeling and Control (3-0-3)
Prerequisite: ROBO 301 or (AERO/MECH 201 & AERO 350/MECH 384)
The course covers the theory and practice of the modeling and control of UAV systems. The key
topics of this course include: the first-principles modeling and simulation of fixed-wing and rotorcraft
UAVs, flight dynamics modeling via system identification, on-board flight control system design, and
control performance tuning of the auto-pilot system.

ROBO 402 UAV Sensing (3-0-3)
Prerequisite: ROBO 302 or (ELCE 302 & (CMPE 324 or CMME 320))
Note: Students can take CMPE 324 or CMME 320 as a co-requisite instead of prerequisite.
The course contents the following topics: Inertial Sensor Based Navigation, Satellite Positioning
(GPS, GLONASS) Based Navigation, Computer Vision, Image Processing, Object Matching, Object
Localization and Image Based Tracking, Lidar and Radar based 3D Mapping and Sensing.

ROBO 403 UAV Navigation (3-0-3)
Prerequisites: ROBO 401, ROBO 402
In this course, students will study navigation systems for UAVs including: Trajectory Planning, Path
Planning and Obstacle Avoidance (classical and reactive paradigms), Localization and Mapping, SLAM,
Visual SLAM.

ROBO 404 UAV Systems (2-3-3)
Prerequisites: ROBO 401, ROBO 402
Co-requisite: ROBO 403
This is a practical course where the students will design, construct and test their own UAV systems.
The key topics of this course include: platform design and construction, actuator and propulsion
system design, sensing system design (based on inertial sensors, positioning system, vision, and etc.),
auto-pilot system design and performance tuning, ground control station development (data
links, protocols, security, and etc.), and UAV operation and interfacing.
Faculty Information
Abi Jaoude, Maguy, Ph.D., Claude Bernard University Lyon 1, FRA, 2011; Assistant Professor of Chemistry, Applied Mathematics and Sciences Department

Abosalem, Yousef, Ph.D., University of Birmingham, 2013; Senior Lecturer in Mathematics

Abualrub, Marwan, Ph.D., University of Illinois at Chicago, USA, 1992; Senior Lecturer, Mathematics, Preparatory program

Abu-Nada, Eiyad, Ph.D., New Mexico State University, USA, 2001; Associate Professor of Mechanical Engineering

Abu Shamaleh, Taghreed, M.Sc., National Center for Plasma Science and Technology (NCPST), Dublin City University (DCU), Ireland, 2010; Lecturer in Physics.

Abutayeh, Mohammad, Ph.D., University of South Florida, USA, 2010, Assistant Professor of Mechanical Engineering

Addad, Yacine, Ph.D., University of Manchester, UK, 2005; Assistant Professor of Nuclear Engineering

Ahmed, Mohamed Wagialla, Ph.D., University of Mississippi USA, 1994; Associate Professor of Arabic and Islamic Studies

Ajhar, Hakim, Ph.D., McGill University, Canada, 2000; Associate Professor of Islamic Studies and Humanities.

Al-Ahmad, Hussain, Ph.D., University of Leeds, UK, 1984; Professor of Electronic Engineering

Al-Azzam, Anas, Ph.D., Concordia University, Montreal, Canada, 2010; Assistant Professor of Mechanical Engineering

Al-Dweik, Arafat, Ph.D., Cleveland State University, USA, 2001; Associate Professor of Communication Engineering

Al-Hammadi, Yousof, Ph.D., The University of Nottingham, UK, 2010; Assistant Professor of Computer Engineering.

Al-Homouz, Dirar, Ph.D., University of Houston, USA, 2007; Assistant Professor of Physics

Ali, Nazar Thamer, Ph.D., University of Bradford, UK, 1991; Associate Professor of Electronic Engineering

Al-Khateeb, Ashraf, Ph.D., University of Notre Dame, USA, 2010; Assistant Professor of Aerospace Engineering

Almoosa, Nawaf, Ph.D., Georgia Institute of Technology, USA, 2014; Assistant Professor

Al-Mualla, Mohammed, Ph.D. University of Bristol, UK, 2000; Senior Vice President, Research and Development

Al-Muhairi, Hassan, Ph.D., University of Essex, UK, 2010; Assistant Professor of Computer Engineering

Al-Safar, Habiba, Ph.D., University of Western Australia, Australia, 2011; Assistant Professor of Biomedical Engineering

Al-Samahi, Samer, Ph.D., Newcastle University, UK, 2010; Assistant Professor of Computer Engineering.

Al Shudeifat, Mohammad, Ph.D., New Mexico State University, USA, 2010, Assistant Professor of Aerospace Engineering

Al-Qutayri, Mahmoud, Ph.D., University of Bath, UK, 1992; Professor of Electrical and Computer Engineering, Associate Dean for Graduate Studies

Archbold, Ricardo H, D.B.A., Nova Southeastern University, USA, 2004; Assistant Professor Humanities and Social Sciences

Archdeacon, Anthony, Ph.D., University of Southampton, UK, 1997; Assistant Professor, Humanities and Social Sciences

Arriagada, Waldo, Ph.D., University of Montreal, Canada, 2010; Assistant Professor of Mathematics

Baek, Joonsang, Ph.D., Monash University, Australia, 2004; Assistant Professor of Information Security

Balawi, Shadi, Ph.D., University of Cincinnati, USA, 2007; Assistant Professor of Aerospace Engineering

Balint, Dennis, Ed. D., Temple University, USA, 2010; Assistant Professor of English

Bani Yunes, Ahmad, Ph.D., Texas A&M University, USA, 2013; Assistant Professor

Barada, Hassan, Ph.D., Louisiana State University, USA, 1989; Professor and Associate Dean for Undergraduate Studies

Barsoum, Zuheir, Ph.D., KTH Royal Institute of Technology, Stockholm, Sweden, 2008; Visiting Associate Professor
Beeley, Philip, Ph.D., McGill University, Canada, 1981; Professor of Practice and Program Chair, Nuclear Engineering

Bennell, Robert, Ph.D., Cranfield University (Royal Military College of Science), UK, 1996; Associate Professor and Interim Chair of Applied Mathematics & Sciences.

Bhaskar, Harish, Ph.D., Loughborough University, U.K., 2007, Assistant Professor of Computer Engineering

Boyce, Jim, M.Ed., City University, USA 1999; Director Preparatory Program and Senior Lecturer

Bridi, Dorian, Ph.D., Vienna University of Technology (Austria), 2008; Lecturer in Preparatory Program

Bsoul, Labeeb, Ph.D., McGill University, Canada, 2003; Associate Professor of Arabic and Islamic Studies

Burton, Thomas, Ph.D., University of Pennsylvania, USA, 1976; Professor and Chair Aerospace Engineering

Byon, Young-Ji, Ph.D., University of Toronto, Canada, 2011; Assistant Professor of Civil Engineering

Cai, Guowei, Ph.D., National University of Singapore, Singapore, 2009; Assistant Professor of Aerospace/Robotics.

Cantwell, Wesley, PhD, Imperial College, UK, 1985, Professor, Interim Chair of Industrial Systems Engineering and Director of the Aerospace Research and Innovation Center

Carbonell, Curtis D., Ph.D., Florida State University, USA, 2009. Assistant Professor of English

Cheng, Denis, M.A, TEFL/TESL, 1980, M.A., Instructional Design and Technologies, 1999, San Francisco State University, USA; Senior Lecturer in English.

Cho, Chung Suk, Ph.D., University of Texas, USA, 2000; Assistant Professor of Civil, Infrastructure and Environmental Engineering

Christoforou, Nicolas, Ph.D., Johns Hopkins University, 2005; Assistant Professor of Biomedical Engineering

Damiani, Ernesto, Ph.D, Università degli Studi di Milano, Italy, 1994; Professor, Department of Electrical and Computer Engineering

Dawood, Ali, Ph.D., University of Essex, UK, 1999; Associate Professor of Communication Engineering

Dias, Jorge, Ph.D., University of Coimbra, Portugal, 1994; Associate Professor of Robotics and Electrical and Computer Engineering

Demirli, Kudret, Ph.D., University of Toronto, Canada, 1995; Professor and Chair, Department of Industrial and Systems Engineering

Doumanidis, Haris, Ph.D., Massachusetts Institute of Technology, USA, 1988; Professor of Mechanical Engineering

El-Dakkak, Omar, PhD in Mathematics (specialization: Mathematical Statistics), Université Pierre et Marie Curie (Paris VII – Paris, France, 2007; Assistant Professor of Mathematics, Department of Applied Mathematics and Sciences

EL-Fouly, Tarek H.M., Ph.D., University of Waterloo, Canada, 2008; Assistant Professor of Electrical and Computer Engineering

El-Jammal, Walid, Ed.D. University of Wilmington, USA, 2006; Senior Lecturer of Physics - Preparatory Program

El-Khasawneh, Bashar, Ph.D., University of Illinois at Urbana-Champaign, 1998, USA; Associate Professor of Practice in Mechanical Engineering

El-Khazali, Reyad, Ph.D., Purdue University, USA, 1992; Associate Professor of Electronic Engineering

El-Kork, Nayla, Ph.D., Claude Bernard University - Lyon 1, France, 2008; Assistant Professor of Physics

El-Naggar, Mohammed Ismail, Ph.D., University of Manitoba, Canada, 1983; Professor of Electronics; Director of the Khalifa Semiconductor Research Center, Abu Dhabi

ElSawi, Mohamed, Ph.D., University of Texas, Austin, USA, 2001; Assistant Professor of Nuclear Engineering

Elayna, Imad, M.Sc., University of Texas at San Antonio, USA, 2002; Senior Lecturer in Mathematics
Fassois, Spilios,
Ph.D., Mechanical Engineering, University of Wisconsin-Madison, USA, 1986; Visiting Professor, Department of Mechanical Engineering

Feng, Samuel,
Ph.D., Princeton University, USA, 2012; Assistant Professor of Applied Mathematics.

Freimuth, Hilda,
Ph.D., Rhodes University, South Africa, 2014; Senior Lecturer and Student Learning Center Coordinator

Gan, Dongming,
Ph.D., Beijing University of Posts and Telecommunications (joint program with King’s College London), China, 2009; Assistant Professor of Robotics and Mechanical Engineering.

Gawanmeh, Amjad,
Ph.D., Concordia University, Canada, 2008; Assistant Professor of Computer Engineering

Gater, Deborah,
Ph.D., Imperial College London, UK, 2008; Assistant Professor of Chemistry

Goddard, Braden,
Ph.D., Texas A&M University, USA, 2013; Post-Doctoral Research Fellow of Nuclear Engineering

Gutierrez, Marte,
Ph.D., University of Tokyo, Japan, 1989; Professor and Chair, Department of Civil Infrastructure and Environmental Engineering

Gawanmeh, Amjad,
Ph.D., Concordia University, Canada, 2008; Assistant Professor of Computer Engineering

Gater, Deborah,
Ph.D., Imperial College London, UK, 2008; Assistant Professor of Chemistry

Goddard, Braden,
Ph.D., Texas A&M University, USA, 2013; Post-Doctoral Research Fellow of Nuclear Engineering

Gutierrez, Marte,
Ph.D., University of Tokyo, Japan, 1989; Professor and Chair, Department of Civil Infrastructure and Environmental Engineering

Ha, Jun Su,
Ph.D., Nuclear and Quantum Engineering, KAIST (Korea Advanced Institute of Science and Technology), South-Korea, 2008; Assistant Professor of Nuclear Engineering.

Hall, Katherine L,
Ph.D., Virginia Tech, USA, 2001; Assistant Professor of English

Hassan, Jamal,
Ph.D., University of Waterloo, Canada, 2006; Assistant Professor of Physics

Hausien, Hashim,
Ph.D., Bath University, UK, 1991, Capstone Project Supervisor

Hayward, Joel,
Ph.D., University of Canterbury, NZ, 1996; Professor and Chair of Humanities and Social Sciences

Hazirbaba, Kenan,
Ph.D., University of Texas at Austin, USA, 2005; Assistant Professor of Civil Engineering

Hitt, George W,
Ph.D., Michigan State University, USA, 2009; Assistant Professor of Physics

Holliday, Lucia,
M.Ed., University of Maryland, College Park, USA, 2003, Lecturer in English.

Iraqi, Youssef,
Ph.D., Université de Montreal, Canada, 2003; Associate Professor of Computer Engineering

Isakovic, Abdel,
Ph.D., University of Minnesota, USA, 2003; Assistant Professor of Physics

Islam, Shafiquil,
Visiting Postdoctoral Fellow, Robotics

Jayaraman, Raja,
Ph.D., Texas Tech University, USA, 2008; Assistant Professor of Industrial and Systems Engineering

Jimaa, Shihab,
Ph.D., Loughborough University, UK, 1989; Associate Professor of Communication Engineering

Kaiktsis, Lambros,
Ph.D., Swiss Federal Institute of Technology (ETH) Zurich, 1995; Visiting Associate Professor of Mechanical Engineering

Kara, Kursat,
Ph.D., Old Dominion University, Norfolk, VA, USA, 2008; Assistant Professor of Aerospace Engineering

Kara, Mualla,
M.Sc., Marmara University, Turkey, 2004; Lecturer in Chemistry

Karagiannidis, Georgios,
Ph.D., University of Patras, Greece, Professor of Electrical & Computer Engineering

Kavazović, Zanin,
Ph.D., Laval University, Québec, Canada, 2011; Assistant Professor

Khalaf, Kinda,
Ph.D., Ohio State University, USA, 1998; Associate Professor of Biomedical Engineering

Khan, Faisal,
Ph.D., Portland State University, USA, 2009; Assistant Professor of Mathematics

Khan, Kamran Ahmed,
Ph.D., Texas A&M University, USA, 2011; Assistant Professor of Aerospace Engineering
Khandoker, Ahsan, Ph.D., Muroran Institute of Technology, Japan, 2004; Assistant Professor of Biomedical Engineering

Kiburz, Claudia, M.Sc., University at Albany, State University of New York, USA, 1992; Senior Lecturer in English

Kim, Tae Yeon, Ph.D., Duke University, USA, 2007; Assistant Professor of Civil Infrastructure and Environmental Engineering

King, Nelson, Ph.D., Industrial & Systems Engineering, University of Southern California, 2001; Associate Professor, Department of Industrial and Systems Engineering

Knight, Gillian, B.A., Exeter University, UK, 1976; Senior Lecturer in English

Kong, Peng-Yong, Ph.D., National University of Singapore, Singapore, 2002; Assistant Professor of Communication Engineering

Kucukalic, Lejla, Ph.D., University of Delaware, USA, 2006; Assistant Professor in Humanities and Social Sciences

Kyritsis, Dimitrios, Ph.D. Princeton University, USA, 1998; Professor and Interim Chair of Mechanical Engineering

Lake, Anthony, D.Phil., University of Sussex, UK, 1997, Assistant Professor of English

La Torre, Davide, Ph.D., University of Milan, Italy, 2002; Visiting Associate Professor

Laursen, Tod A., Ph.D., Stanford University, USA, 1992; Professor of Mechanical Engineering and President

Lee, Sung Mun, Ph.D., Texas A & M University, USA, 2005; Assistant Professor of Biomedical Engineering

Li, Yuanqing, Ph.D., Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, China, 2007; Postdoctoral Fellow of Aerospace Engineering

Liao, Kin, Ph.D., Virginia Tech University, USA, 1995; Professor of Aerospace Engineering

Lin, Jang-Shee Barry, Ph.D., City University of New York, USA, 1995; Associate Professor of Finance/Business, Humanities and Social Sciences

Liu, Maggie or Chunhui, Ph.D, National University of Singapore, 2003; Associate Professor of Humanities and Social Sciences

Lucero-Bryan, Joel, Ph.D., New Mexico State University, USA, 2010; Assistant Professor of Mathematics

Lukman, Suryani, Ph.D., University of Cambridge, UK; Assistant Professor, Applied Mathematics & Sciences

Lake, Anthony, D.Phil., University of Sussex, UK, 1997, Assistant Professor of English

La Torre, Davide, Ph.D., University of Milan, Italy, 2002; Visiting Associate Professor

Laursen, Tod A., Ph.D., Stanford University, USA, 1992; Professor of Mechanical Engineering and President

Lee, Sung Mun, Ph.D., Texas A & M University, USA, 2005; Assistant Professor of Biomedical Engineering

Li, Yuanqing, Ph.D., Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, China, 2007; Postdoctoral Fellow of Aerospace Engineering

Liao, Kin, Ph.D., Virginia Tech University, USA, 1995; Professor of Aerospace Engineering

Lin, Jang-Shee Barry, Ph.D., City University of New York, USA, 1995; Associate Professor of Finance/Business, Humanities and Social Sciences

Liu, Maggie or Chunhui, Ph.D, National University of Singapore, 2003; Associate Professor of Humanities and Social Sciences

Lucero-Bryan, Joel, Ph.D., New Mexico State University, USA, 2010; Assistant Professor of Mathematics

Lukman, Suryani, Ph.D., University of Cambridge, UK; Assistant Professor, Applied Mathematics & Sciences

Maalouf, Maher, Ph.D., University of Oklahoma, USA, 2009; Assistant Professor of Industrial and Systems Engineering

Malkawi, Abeer, M.Sc., University of Jordan, Jordan, 2000; Senior Lecturer in Computer Science

Malik, Tuﬁal, Ph.D., Arizona State University, USA, 2007; Assistant Professor of Mathematics

Marcellus, Kristina, Ph.D., Queen’s University, Canada, 2011; Visiting Assistant Professor of Humanities and Social Sciences

Martin, Matthew N., Ph.D., Rensselaer Polytechnic Institute, USA, 2010; Assistant Professor of Physics

Martin, Thomas, Ph.D., Royal Holloway, University of London, UK, 2004; Assistant Professor of Information Security

Mathew, Bobby, Ph.D., Louisiana Tech University, USA, 2011; Postdoctoral Research Fellow of Mechanical Engineering

McGloughlin, Tim, Ph.D., University of Dublin, Ireland, 1995; Professor and Chair, Biomedical Engineering

Mezher, Kahtan, Ph.D., University of Bradford, UK, 1992; Associate Professor and Associate Chair of Electrical and Computer Engineering

Mizouni, Rabeb, Ph.D., Concordia University, Canada, 2007; Assistant Professor of Software Engineering

Mohamed, Sharmarke, Ph.D., University College London, UK, 2011; Assistant Professor of Applied Mathematics & Science

Mohammad, Baker, Ph.D., University of Texas at Austin, USA, 2008; Assistant Professor of Electronic Engineering

Moran, Valentine, M.A., University of East Anglia, UK, 1989; Senior Lecturer in English
<table>
<thead>
<tr>
<th>Name</th>
<th>Degree, Institution, Year</th>
<th>Position and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mubarak, Khaled</td>
<td>Ph.D., Colorado State University, USA, 2003; Associate Professor of Communication Engineering and Director of Sharjah Campus</td>
<td></td>
</tr>
<tr>
<td>Mughrabi, Asma</td>
<td>M.Sc., University of Jordan, 2005; Lecturer in Mathematics</td>
<td></td>
</tr>
<tr>
<td>Muhaidat, Sami</td>
<td>Ph.D., University of Waterloo, Canada, 2006; Assistant Professor of Communication Engineering</td>
<td></td>
</tr>
<tr>
<td>Mukdadi, Osama</td>
<td>Ph.D., University of Colorado at Boulder, USA, 2002 Visiting Associate Professor, Department of Mechanical Engineering</td>
<td></td>
</tr>
<tr>
<td>Maalouf, Maher</td>
<td>Ph.D., University of Oklahoma, USA, 2009; Assistant Professor of Industrial and Systems Engineering</td>
<td></td>
</tr>
<tr>
<td>Mughrabi, Asma</td>
<td>M.Sc., University of Jordan, 2005; Lecturer in Mathematics</td>
<td></td>
</tr>
<tr>
<td>Muhaidat, Sami</td>
<td>Ph.D., University of Waterloo, Canada, 2006; Assistant Professor of Communication Engineering</td>
<td></td>
</tr>
<tr>
<td>Mukdadi, Osama</td>
<td>Ph.D., University of Colorado at Boulder, USA, 2002 Visiting Associate Professor, Department of Mechanical Engineering</td>
<td></td>
</tr>
<tr>
<td>Maalouf, Maher</td>
<td>Ph.D., University of Oklahoma, USA, 2009; Assistant Professor of Industrial and Systems Engineering</td>
<td></td>
</tr>
<tr>
<td>Malkawi, Abeer</td>
<td>M.Sc., University of Jordan, Jordan, 2000; Senior Lecturer in Computer Science</td>
<td></td>
</tr>
<tr>
<td>Malik, Tufail</td>
<td>Ph.D., Arizona State University, USA, 2007; Assistant Professor of Mathematics</td>
<td></td>
</tr>
<tr>
<td>Marcellus, Kristina</td>
<td>Ph.D., Queen's University, Canada, 2011; Visiting Assistant Professor of Humanities and Social Sciences</td>
<td></td>
</tr>
<tr>
<td>Martin, Matthew N.</td>
<td>Ph.D., Rensselaer Polytechnic Institute, USA, 2010; Assistant Professor of Physics</td>
<td></td>
</tr>
<tr>
<td>Martin, Thomas</td>
<td>Ph.D., Royal Holloway, University of London, UK, 2004; Assistant Professor of Information Security</td>
<td></td>
</tr>
<tr>
<td>Mathew, Bobby</td>
<td>Ph.D., Louisiana Tech University, USA, 2011; Postdoctoral Research Fellow of Mechanical Engineering</td>
<td></td>
</tr>
<tr>
<td>McGloughlin, Tim</td>
<td>Ph.D., University of Dublin, Ireland, 1995; Professor and Chair, Biomedical Engineering</td>
<td></td>
</tr>
<tr>
<td>Mezher, Kahtan</td>
<td>Ph.D., University of Bradford, UK, 1992; Associate Professor and Associate Chair of Electrical and Computer Engineering</td>
<td></td>
</tr>
<tr>
<td>Mizouni, Rabeb</td>
<td>Ph.D., Concordia University, Canada, 2007; Assistant Professor of Software Engineering</td>
<td></td>
</tr>
<tr>
<td>Mohamed, Sharmarke</td>
<td>Ph.D., University College London, UK, 2011; Assistant Professor of Applied Mathematics & Science</td>
<td></td>
</tr>
<tr>
<td>Mohammad, Baker</td>
<td>Ph.D., University of Texas at Austin, USA, 2008; Assistant Professor of Electronic Engineering</td>
<td></td>
</tr>
<tr>
<td>Moran, Valentine</td>
<td>M.A., University of East Anglia, UK, 1989; Senior Lecturer in English</td>
<td></td>
</tr>
<tr>
<td>Nazzal, Samah</td>
<td>Ph.D., University of Alabama in Huntsville, USA, 2010; Visiting Assistant Professor in Applied Mathematics and Sciences</td>
<td></td>
</tr>
<tr>
<td>Ni, Chih-Wen</td>
<td>Ph.D., Georgia Institute of Technology, USA, 2010; Assistant Professor of Biomedical Engineering</td>
<td></td>
</tr>
<tr>
<td>Nolan, Kate</td>
<td>M.A., TEFL University of Reading, United Kingdom, 2002; Senior Lecturer in English</td>
<td></td>
</tr>
<tr>
<td>Ostrowska, Sabina</td>
<td>M.A., University of Nijmegen, The Netherlands, 2003; Senior Lecturer in English.</td>
<td></td>
</tr>
<tr>
<td>Otrok, Hadi</td>
<td>Ph.D., Concordia University, Canada, 2008; Assistant Associate Professor of Computer Engineering</td>
<td></td>
</tr>
<tr>
<td>Owen, Debbie</td>
<td>M. Ed, Manchester University, UK, 2001; Senior Lecturer in English</td>
<td></td>
</tr>
<tr>
<td>Pech, Robert</td>
<td>Ph.D, Royal Melbourne Institute of Technology, Australia, Assistant Professor of Management</td>
<td></td>
</tr>
<tr>
<td>Pearson, Yanthe E.</td>
<td>Ph.D., Rensselaer Polytechnic Institute, USA, 2009; Assistant Professor of Applied Mathematics and Sciences</td>
<td></td>
</tr>
<tr>
<td>Phoenix, Simon</td>
<td>Ph.D., Imperial College, London, UK, 1990; Assistant Professor of Electrical and Computer Engineering</td>
<td></td>
</tr>
<tr>
<td>Polychronopoulou, Kyriaki</td>
<td>Ph.D., University of Cyprus, CYPRUS, 2005; Assistant Professor of Mechanical Engineering</td>
<td></td>
</tr>
</tbody>
</table>
Qattan, Issam,
Ph.D., Northwestern University, USA, 2005; Assistant Professor of Physics

Rao, Sanjeev,
Ph.D., University of Auckland 2010; Research Fellow, Aerospace Research and Innovation Centre

Rezeq, Mohammed,
Ph.D., University of Ottawa, Canada, 2002; Assistant Professor of Physics

Riddlebarger, Julie,
MA-TESOL, San José State University, USA, 1998; Senior Lecturer in English

Ross, Julie Marie,
M.Ed., University of Southern Queensland, Australia, 2003; Senior Lecturer in English

Salah, Khaled,
Ph.D., Illinois Institute of Technology, USA, 2000; Associate Professor of Computer Engineering

Saleh, Hani,
Ph.D., University of Texas at Austin, USA, 2009; Assistant Professor of Mechanical Engineering

Schiffer, Andreas,
D.Phil., University of Oxford, UK, 2014, Assistant Professor of Mechanical Engineering

Sempek, Benjamin,
M.A., the University of Northern Iowa, USA, 1996; Senior Lecturer in English.

Seneviratne, Lakmal,
Ph.D., Kings College, London, UK, 1985; Associate Provost for Research and Graduate Studies, Director of the Robotics Institute and Professor of Mechanical Engineering

Sharif, Bayan,
Ph.D., University of Ulster, N Ireland, 1988; Dean and Professor, College of Engineering

Shariff, M.H.B.M,
Ph.D., University of Newcastle Upon Tyne, UK, 1985; Associate Professor of Mathematics

Sharomi, Oluwaseun,
Ph.D., University of Manitoba, Canada, 2010; Postdoctoral Research Fellow of Applied Mathematics and Sciences

Shoufan, Abdulhadi,
Ph.D., Technische Universität Darmstadt, Germany, 2007; Assistant Professor of Information Security

Shubair, Raed,
Ph.D., University of Waterloo, Canada, 1993; Associate Professor of Communication Engineering

Singh, Shakti,
Ph.D., Purdue University, USA, 2010; Assistant Professor of Electronic Engineering

Sivasankaran, Anoop,
Ph.D., Glasgow Caledonian University, UK, 2010; Assistant Professor of Mathematics

Sluzek, Andrzej;
Warsaw University of Technology, Poland, 1990; Associate Professor of Electrical and Computer Engineering

Steele, Brett,
Ph.D., University of Minnesota, USA, 1994; Associate Professor of Humanities and Social Sciences

Stefanini, Cesare,
Ph.D., Scuola Superiore SantAnna, Italy, 2002; Associate Professor of Biomedical Engineering

Stouraitis, Thanos,
Ph.D., University of Florida, USA, 1986; Professor and Chair, Electrical and Computer Engineering

Solodov, Alexander,
PhD, Texas A&M University, College Station TX, USA, 2007; Assistant Professor of Nuclear Engineering

Sorensen, Aaron,
M.Ed., Temple University, USA, 2003; MS Oregon State University, USA, 2013; Lecturer in English and Mathematics

Shubair, Raed,
Ph.D., University of Waterloo, Canada, 1993; Associate Professor of Communication Engineering

Singh, Shakti,
Ph.D., Purdue University, USA, 2010; Assistant Professor of Electronic Engineering

Sivasankaran, Anoop,
Ph.D., Glasgow Caledonian University, UK, 2010; Assistant Professor of Mathematics

Sluzek, Andrzej;
Warsaw University of Technology, Poland, 1990; Associate Professor of Electrical and Computer Engineering

Steele, Brett,
Ph.D., University of Minnesota, USA, 1994; Associate Professor of Humanities and Social Sciences

Stefanini, Cesare,
Ph.D., Scuola Superiore SantAnna, Italy, 2002; Associate Professor of Biomedical Engineering

Stouraitis, Thanos,
Ph.D., University of Florida, USA, 1986; Professor and Chair, Electrical and Computer Engineering

Solodov, Alexander,
PhD, Texas A&M University, College Station TX, USA, 2007; Assistant Professor of Nuclear Engineering

Sorensen, Aaron,
M.Ed., Temple University, USA, 2003; MS Oregon State University, USA, 2013; Lecturer in English and Mathematics

Shubair, Raed,
Ph.D., University of Waterloo, Canada, 1993; Associate Professor of Communication Engineering

Singh, Shakti,
Ph.D., Purdue University, USA, 2010; Assistant Professor of Electronic Engineering

Sivasankaran, Anoop,
Ph.D., Glasgow Caledonian University, UK, 2010; Assistant Professor of Mathematics

Sluzek, Andrzej;
Warsaw University of Technology, Poland, 1990; Associate Professor of Electrical and Computer Engineering

Steele, Brett,
Ph.D., University of Minnesota, USA, 1994; Associate Professor of Humanities and Social Sciences

Stefanini, Cesare,
Ph.D., Scuola Superiore SantAnna, Italy, 2002; Associate Professor of Biomedical Engineering

Stouraitis, Thanos,
Ph.D., University of Florida, USA, 1986; Professor and Chair, Electrical and Computer Engineering

Solodov, Alexander,
PhD, Texas A&M University, College Station TX, USA, 2007; Assistant Professor of Nuclear Engineering

Sorensen, Aaron,
M.Ed., Temple University, USA, 2003; MS Oregon State University, USA, 2013; Lecturer in English and Mathematics

Shubair, Raed,
Ph.D., University of Waterloo, Canada, 1993; Associate Professor of Communication Engineering

Singh, Shakti,
Ph.D., Purdue University, USA, 2010; Assistant Professor of Electronic Engineering

Sivasankaran, Anoop,
Ph.D., Glasgow Caledonian University, UK, 2010; Assistant Professor of Mathematics

Sluzek, Andrzej;
Warsaw University of Technology, Poland, 1990; Associate Professor of Electrical and Computer Engineering

Steele, Brett,
Ph.D., University of Minnesota, USA, 1994; Associate Professor of Humanities and Social Sciences

Stefanini, Cesare,
Ph.D., Scuola Superiore SantAnna, Italy, 2002; Associate Professor of Biomedical Engineering

Stouraitis, Thanos,
Ph.D., University of Florida, USA, 1986; Professor and Chair, Electrical and Computer Engineering

Solodov, Alexander,
PhD, Texas A&M University, College Station TX, USA, 2007; Assistant Professor of Nuclear Engineering

Sorensen, Aaron,
M.Ed., Temple University, USA, 2003; MS Oregon State University, USA, 2013; Lecturer in English and Mathematics

Shubair, Raed,
Ph.D., University of Waterloo, Canada, 1993; Associate Professor of Communication Engineering

Singh, Shakti,
Ph.D., Purdue University, USA, 2010; Assistant Professor of Electronic Engineering

Sivasankaran, Anoop,
Ph.D., Glasgow Caledonian University, UK, 2010; Assistant Professor of Mathematics

Sluzek, Andrzej;
Warsaw University of Technology, Poland, 1990; Associate Professor of Electrical and Computer Engineering

Steele, Brett,
Ph.D., University of Minnesota, USA, 1994; Associate Professor of Humanities and Social Sciences

Stefanini, Cesare,
Ph.D., Scuola Superiore SantAnna, Italy, 2002; Associate Professor of Biomedical Engineering

Stouraitis, Thanos,
Ph.D., University of Florida, USA, 1986; Professor and Chair, Electrical and Computer Engineering

Solodov, Alexander,
PhD, Texas A&M University, College Station TX, USA, 2007; Assistant Professor of Nuclear Engineering

Sorensen, Aaron,
M.Ed., Temple University, USA, 2003; MS Oregon State University, USA, 2013; Lecturer in English and Mathematics

Umer, Rehan,
Ph.D., University of Auckland, New Zealand, 2008; Assistant Professor of Aerospace Engineering
Vestri, Elena,
M.A., University of South Florida, USA, 1989; Senior Lecturer in English

Wang, Quan,
Ph.D., Peking University, China, 1994; Professor of Mechanical Engineering

Werghi, Naoufel,
Ph.D., University of Strasbourg, France, 1996; Associate Professor of Computer Engineering

Weruaga, Luis,
Ph.D., Polytechnic University of Madrid, Spain, 1994, Associate Professor of Electronic Engineering

Wilson, Robert A.,
MA, University of Essex, UK, 2005; Lecturer in English

Yapici, Murat Kaya,
Ph.D., Texas A&M University-College Station, USA, 2009; Assistant Professor of Electronic Engineering

Yeon, Chan Yeob,
Ph.D., Royal Holloway, University of London, UK, 2000; Assistant Professor of Computer Engineering

Yi, Yongsun,
Ph.D., Tohoku University, Japan, 1995; Assistant Professor of Nuclear Engineering

Yildiz, Ibrahim,
Ph.D. University of Miami, USA, 2008; Assistant Professor of Applied Mathematics and Sciences

Yildiz, Banu Sizirici,
Ph.D., Florida International University, USA 2009, Assistant Professor of Civil Engineering

Yoon, Ho Joon,
Ph.D., KAIST, Korea, 2010; Postdoctoral Fellow: Nuclear Engineering.

Yousif, Safaa,
M.Sc., United Arab Emirates University, UAE, 2012; Lecturer in Chemistry

Zahawi, Bashar,
PhD, Newcastle University, UK, 1988; Professor of Electrical and Computer Engineering

Zaki, Rachad,
Ph.D., Université Pierre et Marie Curie, France, 2007; Assistant Professor of Mathematics

Zaki, Wael,
Ph.D., Ecole Polytechnique, Paris, France, 2006; Assistant Professor of Mechanical Engineering

Zemerly, Mohamed-Jamal,
Ph.D., University of Birmingham, UK, 1989; Associate Professor of Computer Engineering

Zheng, Lianxi,
Ph.D. in Physics, University of Hong Kong, China (2001); Associate Professor, Department of Mechanical Engineering