Research News

Make it so! The Holodeck from Star Trek is closer than you think

September 21, 2018


18 August 2013

Readers who are Star Trek fans will be familiar with the Holodeck; a chamber that completely immerses the user in a virtual setting that is both visual and sensory.

Science fiction technologies have a long history of migration into the real world, and as a science fiction fan it is exciting that the Holodeck is now under research with primitive prototypes reported by industry and academia.

The underpinning technology covers computing, communications, displays and sensors, just to name a few. From a communications technology point of view this immersion video experience will lead to an explosions of data transmission.

Even today more than 70% of wireless bandwidth is used for bandwidth-intensive videos and that number is growing. Our gadgets and online infrastructure will have to keep pace with our increasing demand for high-quality, high-speed data transfer.

New communication links will have to be developed that can sustain data transfer rates of tens of gigabits per second to a portable device, compared to today’s rates of typically a few megabits and at best a few hundred megabits.

This will not be easy. Fortunately, the rapid gains made starting from the 1960s in shrinking the size of transistors, which today allow billions of transistors to be fitted on a single chip, have also tremendously improved the speed of those transistors.

The prospects of wireless links with tens of gigabit rates appear real, but require the most advanced nano-scale transistor technologies available today.

Academic research institutes that focus on furthering cutting-edge of science surprisingly do not often have access to this technology. Most researchers, for example, use transistors made that are 90 nanometres (millionths of a millimeter) across – the size that was at the cutting edge of computing technology around a decade ago. This type of research, however, will benefit from transistors less than a third that size – much closer to the scale now found in today’s fastest computers.

The necessary transistor technology can be found within the labs of only the world’s top industry leaders. The Masdar Institute has been fortunate to find a partner in the leading semiconductor foundry company Globalfoundries to work together to design the high-speed circuits tomorrow’s intensive data transfer reality requires.

Through this collaboration, Masdar Institute students and academics have use of Globalfoundries’ Abu Dhabi facilities and access to the most advanced transistor technology and design tools.

Masdar Institute students will also be able to produce their designs at Globalfoundries’ manufacturing facilities. We hope this will create a pool of young, creative and highly trained minds to not only conduct unique research but also contribute towards a knowledge-based economy in the UAE.

Skilled engineers, after all, are difficult to find in even the most well established innovation clusters. By working with future engineers during their studies, Globalfoundries, wholly owned by the Advanced Technology Investment Company (Atic), is contributing to the quality and availability of the UAE’s skilled professionals.

This kind of collaboration is essential for the UAE’s overall innovation ecosystem. Collaboration between industry and academia has long provided mutual benefit and synergy for not only the involved companies and universities, but also the wider industry and economy as a whole.

Through this partnership we hope not only to help provide promising research results to meet future high-speed data transfer demands, but also strengthen the UAE’s position as a regional hub for semiconductors. By working together, we can help achieve our shared goals and enjoy mutual success.
 
Dr. Ayman Shabra is an assistant professor of microsystems engineering at the Masdar Institute of Science and Technology.