Bing Zhou

Bing Zhou

Associate Professor of Geophysics,Department of Earth Science, The Petroleum Institute

Telephone: +971 (0)26075728

Email: bing.zhou@ku.ac.ae


Dr. Bing Zhou received his BSc of Applied Geophysics and MSc of Seismology from Chengdu University of Technology (CDUT) in China in 1982 and 1989, respectively. He became an Associate Professor of CDUT in 1992. During 1992-1994, He was visiting researchers and worked at Flinders University in Australia and the International Centre of Theoretical Physics in Italy. In 1998, he earned his PhD in Geophysics from The University of Adelaide (AU) in Australia. Since then, he has worked as a Research Associate (1998-2007) and a Senior Research Fellow (2007-2013) at AU.

Since 1995, Dr. Bing Zhou has engaged in 16 research projects from government and industry funding sources and published more than 90 articles in international refereed journals, and delivered many presentations in international workshops and conferences, also supervised 6 post-doctors, 7 PhD and 12 MSc students.

Dr Bing Zhou has expertise in geoelectric, electromagnetic, and seismic modelling and inversion. He was a Guest Researcher at Lund University in Sweden (2000) and Visiting Scholars at Vienna University in Austria (2004) and the Federal Institute of Technology in Switzerland (2008,2009), as well Copenhagen University in Denmark (2013). He is regular reviewers for many reputable international geophysical journals, and Associate Editors of the ‘Near Surface Geophysics’ and ‘Journal of Geophysics and Engineering’, also a Research Consultant of KACST in Saudi Arabia (2013-2016), an Adjunct Associate Professor at the Université du Québec en Abitibi-Témiscamingue in Canada (2016-2019), and ZZ-resistivity Imaging Company in Australia (2008-present).

Dr. Bing Zhou was recipients of the Award for the best paper of Journal of Geophysics and Engineering in 2014, Europe Ludger Mintrop Award in 2013, and the best Reviewer for Geophysical Journal International in 2011.


  • 1998   PhD (Geophysics), University of Adelaide, Adelaide, Australia
  • 1989 MSc (Seismology), Chengdu University of Technology, Chengdu, China
  • 1989 BSc (Applied Geophysics), Chengdu University of Technology, Chengdu, China
  • Courses:
    • Introduction to geology & geophysics (PGEG221)
    • MATLAB for Earth Scientists (PGEG300)
    • Data Analysis & Geostatistics (PGEG371)
    • Seismic Wave Modelling & Imaging (PGEG615)

    Teaching interests:

    • Applied Geophysics
    • Geophysical modelling & inversion

    Geophysical data processing and interpretations.


  • A novel surveying configuration and new imaging algorithms of electrical resistivity tomography for assessment of groundwater resources in Abu Dhabi (AARE17-273).
  • Seismic anisotropic viscoelastic tomography using multi-arrival traveltimes and full waveform spectra for imaging carbonate reservoirs (CIRA-18-48).
  • Xu, L., Greenhalgh, S., BIng Z., and Greenhalgh, M., 2019, “Frequency-domain seismic wave modelling in heterogeneous porous media using the mixed-grid finite-difference method”, Geophysical Journal International 216, 34-54, doi:10.1093/gji/ggy410.
  • Bing Z., 2018, “Electrical Resistivity Tomography: A Subsurface-Imaging Technique”, in book: Applied Geophysics with Case Studies on Environmental, Exploration and Engineering Geophysics, doi: 10.5772/intechopen.81511.
  • S. , Yang, C. Bai, and Bing Z., 2018, Wavefield modelling in two-phase media including undulated topography based on reformulated BISQ model by curvilinear grid FD method, Chinese Journal of Geophysics 61(8), 3356-3373. Doi:10.6038/cjg2018L0638.
  • Bin Lin, and Bing, Z., 2018, “Subdomain Chebyshev spectral method for 2.5-D seismic wave modelling in VTI media”, International Geophysical Conference, Beijing. doi:org/10.1190/IGC2018-232.
  • Lijiao Zhao, and Bing Z,, 2018, “Calculation of slowness vector from ray directions for qP-, qSV and qSH-waves in tilted transversely isotropic media”, Geophysics 83, C153-160. doi: 1190/GEO2017-0751.1.
  • Xu, L., Greenhalgh, S., Bing Z. and Greenhalgh, M., 2018, “Effective Biot theory and its generalization to poroviscoelastic models “, Geophysical Journal International, 202, pp.119. doi: 10.1093/gji/ggx460.
  • Guangnan, H., Bing Z., Hongxing L. and David, C., 2017, Seismic traveltime inversion based on tomographic equation without integral terms, Computers & Geosciences 104, 29-34. https://dx.doi.org/10.1016/j.cageo.2017.04.002
  • Youshan, L., Jiwen T., Tao, X. Jose, B., Qinya L. and Bing, Z., 2017, Effects of Conjugate Gradient Methods and Step-Length Formulas on the Multiscale Full Waveform Inversion in Time Domain: Numerical Experiments, Pure Appl. Geophys. 170, 1361-1672. http://doi.10.1007/s00024-017-1512-3
  • Xu L., Greenhalgh, S., Bing, Z.and Graham Heinson, 2016, Generalized poroviscoelastic model based on effective Biot theory and its application to borehole guided wave analysis, Geophys. J. Int. 207, 1472–1483. https://doi:10.1093/gji/ggw345
  • Alfouzan, F., Bing, Z., Bakkour, K., and Alyousif, M., 2016, Detecting near-surface buried targets by a geophysical cluster of electromagnetic and resistivity scanners, Journal of Applied Geophysics 134, 55–63. http://dx.doi.org/10.1016/j.jappgeo.2016.08.006
  • Bing, Z., Graham, H., and Aixa, R., 2015, Subdomain Chebyshev Spectral Method for 2D and 3D Numerical Differentiations in a Curved Coordinate System, Journal of Applied Mathematics and Physics 3, 358-370. http://dx.doi.org/10.4236/jamp.2015.33047
  • Timothy, W., Greenhalgh, S., Bing, Z., Greenhalgh, M., and Laurent M., 2015, Resistivity inversion in 2-D anisotropic media: numerical experiments, Geophys. J. Int. 201, 247–266. https://doi:0.1093/gji/ggv012
  • Bing, Z., Graham, H., and Aixa, R., 2015, Integrated and Explicit Boundary Conditions of Electromagnetic Fields at Arbitrary Interfaces between Two Anisotropic Media, Journal of Electromagnetic Analysis and Applications 7, 75-88.  http://dx.doi.org/10.4236/jemaa.2015.73009
  • Guangnan, H., Bing, Z., Hongxi, L., Hua, Z., and Zelin, L., 2014., 2D seismic reflection tomography in strongly anisotropic media, J. Geophys. Eng. 11, 1-8.    http://doi:10.1088/1742-2132/11/6/065012
  • Greenhalgh, S., Xu, L., and Bing, Z., 2014, A model for determination of effective permeability from acoustic wavespeed and attenuation in a rigid two-phase porous medium, Near Surface Geophysics 12, 391-404. http://doi:10.3997/1873-0604.2013061
  • Tao, Fei, L., Zhenbo, W., Chenglong, W., Ergen, G., Bing, Z., Zhongjie, Z., and Guoming, X.,2014, A successive three-point perturbation method for fast ray tracing in complex 2D and 3D geological models, Tectonophysics627, 72-81. https://dx.doi.org/10.1016/j.tecto.2014.02.012
  • Greenhalgh, S., Xu, L., and Bing, Z.,2014, A Model for determination of effective permeability from acoustic wavespeed and attenuation in a rigid two-phase porous medium, Near Surface Geophysics 12, 391-404. https://doi:10.3997/1873-0604.201306
  • Chaoyin, B., Huang, G., Liu X., Bing, Z., and Greenhalgh, S., 2013,Ray tracing of multiple transmitted/reflected/converted waves in 2-D/3-D layered anisotropic TTI media and application to crosswell traveltime tomography, Geophys. J.Int.195, 1068-1087. https://doi.org/10.1093/gji/ggt267
  • Bing, Z.,Greenhalgh, S., and Hansruedi, M., 2012, 2.5-D frequency-domain seismic wave modelling in heterogeneous anisotropic media with Gaussian quadrature grid”, Computer and Geosciences39, 18-33. https://doi.org/10.1016/j.cageo.2011.06.005
  • Bing, Z., Greenhalgh, S., and Greenhalgh, M., 2012, Wavenumber sampling strategies for 2.5-D frequency-domain seismic wave modelling in general anisotropic media, Geophys. J. Int. 188, 223–238. https://doi.org/10.1111/j.1365-246X.2011.05246.x
  • Catherune, S., Greenhalgh, S., and Bing, Z., 2012, Wavenumber Sampling Issues in 2.5D Frequency Domain Seismic Modelling, Pure Appl. Geophys. 169, 141–156. https://doi:10.1007/s00024-011-0277-3
  • Bing, Z.,and Greenhalgh, S., 2011, 3-D frequency-domain seismic wave modelling in heterogeneous, anisotropic media using a Gaussian quadrature grid approach, Geophys. J. Int. 184, 507–52. https://doi.org/10.1111/j.1365-246X.2010.04859.x
  • Bing, Z.,and Greenhalgh, S., 2011, Computing the sensitivity Frechet kernel for 2.5-D seismic waveform inversion in heterogeneous, anisotropic media”, Pure and Applied Geophysics,168, 1729-1748.
  • Bing, Z.,and Greenhalgh, S., 2011, Reply to comment by Jon´as D. De Basabe on ‘3-D frequency-domain seismic wave modelling in heterogeneous, anisotropic media using a Gaussian quadrature grid approach’, Geophys. J. Int. 186, 773–774. https://doi.org/10.1111/j.1365-246X.2011.05084.x
  • Xu, L., Greenhalgh, S., and Bing, Z., 2010, Approximating the wave moduli of double porosity media at low frequencies by a single Zener or Kelvin-Voigt element, Geophys. J. Int. 181, 391–398. https://doi.org/10.1111/j.1365-246X.2009.04494.x
  • Xu K., Bing, Z.,and George, M., 2009, Implementation of pre-stack reverse-time migration using frequency-domain extrapolation, Geophysics 75, S61-72.  https://doi.org/10.1190/1.3339386
  • Bing, Z., Greenhalgh, M., and Greenhalgh, S., 2009, 2.5-D/3-D resistivity modelling in anisotropic media using Gaussian quadrature grids, Geophys. J. Int. 176, 63-80. https://doi.org/10.1111/j.1365-246X.2008.03950.x
  • Bing, Z.,and Greenhalgh, S., 2009, On the computation of the Frechet derivatives for seismic waveform inversion in 3-D general anisotropic, inhomogeneous media, Geophysics, 74, WB153-163.  https://doi.org/10.1190/1.3123766
  • Greenhalgh, S., Bing, Z., Greenhalgh, M., Maricecot, L. and Wiese, T., 2009, Explicit expressions for Frechet derivatives in 3D anisotropic resistivity inversion, Geophysics 74, F31-F43. https://doi.org/10.1190/1.3111114
  • Bing, Z.,and Greenhalgh, S., 2008, Non-linear traveltime inversion for 3-D seismic tomography in strongly anisotropic media, Geophys. J. Int. 172, 383–394. https://doi.org/10.1111/j.1365-246X.2007.03649.x
  • Bing, Z., Greenhalgh, S., and Green, A., 2008, Non-linear traveltime inversion scheme for crosshole seismic tomography in tilted transversely isotropic media, Geophysics 73, D17-D33. https://doi.org/10.1111/j.1365-246X.2007.03649.x
  • Bing Z., and Greenhalgh, S., 2008, Velocity sensitivity of seismic body waves to the anisotropic parameters of a TTI-medium, J. Geophysical. Eng. 5, 245–255. http://doi.org/10.1088/1742-2132/5/3/001
  • Torleif, D., and Bing, Z., 2006, Multiple-gradient array measurements for multichannel 2D resistivity imaging, Near Surface Geophysics 4, 113-123. http://doi.org/10.3997/1873-0604.2005037
  • Greenhalgh, S., Bing, Z., and Green, A., 2006, Solutions, algorithms and inter-relations for local minimization search geophysical inversion, J. Geophys. Eng. 3, 101–113. http://doi.org/10.1088/1742-2132/3/2/001
  • Bing, Z.,and Greenhalgh, S., 2006,Raypath and traveltime computations for 2D transversely isotropic media with dipping symmetry axes, Exploration Geophysics 37, 150-159.https://doi.org/10.1071/EG06150
  • Bing, Z., and Greenhalgh, S., 2005, Analytic expressions for the velocity sensitivity to the elastic moduli for the most general anisotropic media, Geophysical Prospecting 53, 619–641. http://doi.org/10.1111/j.1365-2478.2005.00490.x
  • Bing, Z., and Greenhalgh, S., 2005, ‘Shortest path’ ray tracing for most general 2D/3D anisotropic media, J. Geophys. Eng. 2, 54–63. http://doi.org/10.1088/1742-2132/2/1/008
  • Bing, Z.,and Torleif, D., 2004, Numerical comparisons of 2D resistivity imaging with 10 electrode arrays, Geophysical Prospecting 52, 379-398. http://doi.org/10.1111/j.1365-2478.2004.00423.x
  • Bing, Z., and Greenhalgh, S., 2004, On the computation of elastic wave group velocities for a general anisotropic medium, J. Geophys. Eng. 1, 205–215. http://doi.org/10.1088/1742-2132/1/3/005
  • Bing, Z., and Greenhalgh, S., 2003, Crosshole seismic inversion with normalized full-waveform amplitude data, Geophysics 68, 1320-1330. http://doi.org/10.1190/1.1598125
  • Greenhalgh, S., and Bing, Z., 2003, Surface seismic imaging by multi-frequency amplitude inversion, Exploration Geophysics 34,217–224. http://doi.org/10.1071/EG03217
  • Bing, Z.,and Torleif, D., 2003, Properties and effects of measurement errors on 2D resistivity imaging surveying, Near Surface Geophysics 1, 105-117. http://doi.org/10.3997/1873-0604.2003001
  • Bing, Z.,and Greenhalgh, S., 2001, Finite element three-dimensional direct current resistivity modelling: accuracy and efficiency considerations, Geophys. J. Int. 145, 679–688.  https://doi.org/10.1046/j.0956-540x.2001.01412.x
  • Bing, Z., and Greenhalgh, S., 2000, Cross-hole resistivity tomography using different electrode configurations, Geophysical Prospecting 48, 887-912. http://doi.org/10.1046/j.1365-2478.2000.00220.x
  • Bing, Z.,and Greenhalgh, S., 1999, Explicit expressions and numerical calculations for the Frechet and second derivatives in 2.5D Helmholtz equation inversion, Geophysical Prospecting 47, 443–468. http://doi.org/10.1046/j.1365-2478.1999.00139.x
  • Bing, Z., and Greenhalgh, S., 1998, Composite boundary-valued solution of the 2.5-D Green’s function for arbitrary acoustic media, Geophysics 63, 1813-1823. http://doi.org/10.1190/1.1444475
  • Bing, Z., Greenhalgh, S., and Sinadinoviski, C., 1992, Iterative algorithms for the damped minimum norm, least-squares and constrained problem in seismic tomography, Exploration Geophysics 23, 497-505. http://doi.org/10.1071/EG992497

New to site? Create an Account


Lost password? (close)

Already have an account? Login